State constrained stochastic optimal control for continuous and hybrid dynamical systems using DFBSDE

被引:3
作者
Dai, Bolun [1 ]
Krishnamurthy, Prashanth [1 ]
Papanicolaou, Andrew [2 ]
Khorrami, Farshad [1 ]
机构
[1] NYU, Brooklyn, NY 11201 USA
[2] North Carolina State Univ, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Stochastic control; Optimal control; Forward and backward stochastic; differential equations; MPC;
D O I
10.1016/j.automatica.2023.111146
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a computationally efficient learning-based forward-backward stochastic differential equa-tions (FBSDE) controller for both continuous and hybrid dynamical (HD) systems subject to stochas-tic noise and state constraints. Solutions to stochastic optimal control (SOC) problems satisfy the Hamilton-Jacobi-Bellman (HJB) equation. Using current FBSDE-based solutions, the optimal control can be obtained from the HJB equations using deep neural networks (e.g., long short-term memory (LSTM) networks). To ensure the learned controller respects the constraint boundaries, we enforce the state constraints using a soft penalty function. In addition to previous works, we adapt the deep FBSDE (DFBSDE) control framework to handle HD systems consisting of continuous dynamics and a deterministic discrete state change. We demonstrate our proposed algorithm in simulation on a continuous nonlinear system (cart-pole) and a hybrid nonlinear system (five-link biped).& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 22 条
  • [1] DYNAMIC PROGRAMMING
    BELLMAN, R
    [J]. SCIENCE, 1966, 153 (3731) : 34 - &
  • [2] Chen Y., 2019, P INT C LEARNING REP
  • [3] RABBIT: A testbed for advanced control theory
    Chevallereau, C
    Abba, G
    Aoustin, Y
    Plestan, F
    Westervelt, ER
    Canudas-de-Wit, C
    Grizzle, JW
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (05): : 57 - 79
  • [4] Stochastic optimal control via Bellman's principle
    Crespo, LG
    Sun, JQ
    [J]. AUTOMATICA, 2003, 39 (12) : 2109 - 2114
  • [5] Learning a Better Control Barrier Function
    Dai, Bolun
    Krishnamurthy, Prashanth
    Khorrami, Farshad
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 945 - 950
  • [6] Dai BL, 2021, Arxiv, DOI arXiv:2107.07931
  • [7] Dai BL, 2021, P AMER CONTR CONF, P1294, DOI 10.23919/ACC50511.2021.9482832
  • [8] Navigating over 3D environments while minimizing cumulative exposure to hazardous fields
    Demetriou, Michael A.
    Bakolas, Efstathios
    [J]. AUTOMATICA, 2020, 115
  • [9] Deep Learning and Mean-Field Games: A Stochastic Optimal Control Perspective
    Di Persio, Luca
    Garbelli, Matteo
    [J]. SYMMETRY-BASEL, 2021, 13 (01): : 1 - 20
  • [10] Diehl M, 2009, LECT NOTES CONTR INF, V384, P391, DOI 10.1007/978-3-642-01094-1_32