Rapid planning and analysis of high-throughput experiment arrays for reaction discovery

被引:23
作者
Mahjour, Babak [1 ]
Zhang, Rui [2 ]
Shen, Yuning [1 ]
McGrath, Andrew [1 ]
Zhao, Ruheng [1 ]
Mohamed, Osama G. [3 ]
Lin, Yingfu [1 ]
Zhang, Zirong [1 ]
Douthwaite, James L. [1 ]
Tripathi, Ashootosh [1 ,3 ]
Cernak, Tim [1 ,2 ]
机构
[1] Univ Michigan, Dept Med Chem, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Life Sci Inst, Nat Prod Discovery Core, Ann Arbor, MI USA
基金
美国国家科学基金会;
关键词
OPTIMIZATION; CHEMISTRY; EVOLUTION; ACIDS;
D O I
10.1038/s41467-023-39531-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-throughput experimentation (HTE) is an increasingly important tool in reaction discovery. While the hardware for running HTE in the chemical laboratory has evolved significantly in recent years, there remains a need for software solutions to navigate data-rich experiments. Here we have developed phactor & TRADE;, a software that facilitates the performance and analysis of HTE in a chemical laboratory. phactor & TRADE; allows experimentalists to rapidly design arrays of chemical reactions or direct-to-biology experiments in 24, 96, 384, or 1,536 wellplates. Users can access online reagent data, such as a chemical inventory, to virtually populate wells with experiments and produce instructions to perform the reaction array manually, or with the assistance of a liquid handling robot. After completion of the reaction array, analytical results can be uploaded for facile evaluation, and to guide the next series of experiments. All chemical data, metadata, and results are stored in machine-readable formats that are readily translatable to various software. We also demonstrate the use of phactor & TRADE; in the discovery of several chemistries, including the identification of a low micromolar inhibitor of the SARS-CoV-2 main protease. Furthermore, phactor & TRADE; has been made available for free academic use in 24- and 96-well formats via an online interface. High-throughput experimentation is an increasingly important tool in reaction discovery, while there remains a need for software solutions to navigate data-rich experiments. Here the authors report phactor & TRADE;, a software that facilitates the performance and analysis of high-throughput experimentation in a chemical laboratory.
引用
收藏
页数:9
相关论文
共 68 条
[1]  
ACD/Labs, 2023, KAT D2D
[2]   The power and accessibility of high-throughput methods for catalysis research [J].
Allen, C. Liana ;
Leitch, David C. ;
Anson, Michael S. ;
Zajac, Matthew A. .
NATURE CATALYSIS, 2019, 2 (01) :2-4
[3]   Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling [J].
Angello, Nicholas H. ;
Rathore, Vandana ;
Beker, Wiktor ;
Wolos, Agnieszka ;
Jira, Edward R. ;
Roszak, Rafal ;
Wu, Tony C. ;
Schroeder, Charles M. ;
Aspuru-Guzik, Alan ;
Grzybowski, Bartosz A. ;
Burke, Martin D. .
SCIENCE, 2022, 378 (6618) :399-405
[4]   Synergy Between Expert and Machine-Learning Approaches Allows for Improved Retrosynthetic Planning [J].
Badowski, Tomasz ;
Gajewska, Ewa P. ;
Molga, Karol ;
Grzybowski, Bartosz A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (02) :725-730
[5]   openBIS ELN-LIMS: an open-source database for academic laboratories [J].
Barillari, Caterina ;
Ottoz, Diana S. M. ;
Fuentes-Serna, Juan Mariano ;
Ramakrishnan, Chandrasekhar ;
Rinn, Bernd ;
Rudolf, Fabian .
BIOINFORMATICS, 2016, 32 (04) :638-640
[6]   Machine Learning May Sometimes Simply Capture LiteraturePopularity Trends: A Case Study of Heterocyclic Suzuki-MiyauraCoupling [J].
Beker, Wiktor ;
Roszak, Rafal ;
Wolos, Agnieszka ;
Angello, Nicholas H. ;
Rathore, Vandana ;
Burke, Martin D. ;
Grzybowski, Bartosz A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (11) :4819-4827
[7]   Microscale High-Throughput Experimentation as an Enabling Technology in Drug Discovery: Application in the Discovery of (Piperidinyl)pyridinyl-1H-benzimidazole Diacylglycerol Acyltransferase 1 Inhibitors [J].
Cernak, Tim ;
Gesmundo, Nathan J. ;
Dykstra, Kevin ;
Yu, Yang ;
Wu, Zhicai ;
Shi, Zhi-Cai ;
Vachal, Petr ;
Sperbeck, Donald ;
He, Shuwen ;
Murphy, Beth Ann ;
Sonatore, Lisa ;
Williams, Steven ;
Madeira, Maria ;
Verras, Andreas ;
Reiter, Maud ;
Lee, Claire Heechoon ;
Cuff, James ;
Sherer, Edward C. ;
Kuethe, Jeffrey ;
Goble, Stephen ;
Perrotto, Nicholas ;
Pinto, Shirly ;
Shen, Dong-Ming ;
Nargund, Ravi ;
Balkovec, James ;
DeVita, Robert J. ;
Dreher, Spencer D. .
JOURNAL OF MEDICINAL CHEMISTRY, 2017, 60 (09) :3594-3605
[8]   Mining Electronic Laboratory Notebooks: Analysis, Retrosynthesis, and Reaction Based Enumeration [J].
Christ, Clara D. ;
Zentgraf, Matthias ;
Kriegl, Jan M. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2012, 52 (07) :1745-1756
[9]   Data-science driven autonomous process optimization [J].
Christensen, Melodie ;
Yunker, Lars P. E. ;
Adedeji, Folarin ;
Hase, Florian ;
Roch, Loic M. ;
Gensch, Tobias ;
dos Passos Gomes, Gabriel ;
Zepel, Tara ;
Sigman, Matthew S. ;
Aspuru-Guzik, Alan ;
Hein, Jason E. .
COMMUNICATIONS CHEMISTRY, 2021, 4 (01)
[10]   MACHINE LEARNING The chemistry of errors [J].
Cole, Jacqueline M. .
NATURE CHEMISTRY, 2022, 14 (09) :973-975