Cloud Detection in Optical Remote Sensing Images With Deep Semi-Supervised and Active Learning

被引:7
|
作者
Yao, Xudong [1 ,2 ]
Guo, Qing [1 ]
Li, An [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing; Uncertainty; Training; Optical sensors; Optical imaging; Image segmentation; Earth; Active learning (AL); cloud detection; Index Terms; optical remote sensing image; semi-supervised learning (SSL); SHADOW DETECTION;
D O I
10.1109/LGRS.2023.3287537
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Clouds hinder the surface observation by optical remote sensing sensors. It is of great significance to detect clouds and nonclouds in remote sensing images. Compared with the traditional cloud detection methods, deep learning methods usually achieve promising detection results. Moreover, large-scale, high-quality labeled datasets can effectively improve the accuracy and generalization of deep learning models. However, this incurs a great deal of label effort and cost. In this letter, we propose a cloud detection method based on deep semi-supervised learning (SSL) and active learning (AL) in optical remote sensing images named SSAL-cloud detection (SSAL-CD). SSL part of SSAL-CD is implemented by the cross-validation between two-way neural networks, which can effectively train in the case of insufficient labeled data and reduce the cost of labeling. AL part proposes a suitable query strategy based on the uncertainty, degree of divergence, and diversity information provided by the training model. The query strategy can screen out high-value samples for SSL, which further improves the detection effect. Repeat the process of SSL and AL until the accuracy meets requirements or the labeling budget is exhausted. Extensive experimental results in Landsat-8 Biome dataset demonstrate that SSAL-CD can achieve the state-of-the-art segmentation performance with a small number of labels.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] SEMI-SUPERVISED OBJECT DETECTION IN REMOTE SENSING IMAGES BASED ON ACTIVE LEARNING
    Wang, Yuhao
    Yao, Lifan
    Meng, Gang
    Zhang, Xinye
    Song, Jiayun
    Zhang, Haopeng
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5571 - 5574
  • [2] Active Versus Semi-supervised Learning Paradigm for the Classification of Remote Sensing Images
    Persello, Claudio
    Bruzzone, Lorenzo
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVII, 2011, 8180
  • [3] Boosting Semi-Supervised Object Detection in Remote Sensing Images With Active Teaching
    Zhang, Boxuan
    Wang, Zengmao
    Du, Bo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [4] Prototype Discriminative Learning for Semi-Supervised Change Detection in Remote Sensing Images
    You, Zhi-Hui
    Chen, Si-Bao
    Wang, Jia-Xin
    Ding, Chris H. Q.
    Tang, Jin
    Luo, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] Reliable Contrastive Learning for Semi-Supervised Change Detection in Remote Sensing Images
    Wang, Jia-Xin
    Li, Teng
    Chen, Si-Bao
    Tang, Jin
    Luo, Bin
    Wilson, Richard C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Meta-Learning-Based Semi-Supervised Change Detection in Remote Sensing Images
    Tang, Yi
    Zhang, Liyi
    Zhang, Wuxia
    Jiang, Zuo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [7] A hierarchical learning paradigm for semi-supervised classification of remote sensing images
    Alhichri, Haikel
    Bazi, Yacoub
    Alajlan, Naif
    Ammour, Nassim
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4388 - 4391
  • [8] Change detection of remote sensing images with semi-supervised multilayer perceptron
    Patra, Swarnajyoti
    Ghosh, Susmita
    Ghosh, Ashish
    FUNDAMENTA INFORMATICAE, 2008, 84 (3-4) : 429 - 442
  • [9] Change detection of remote sensing images with semi-supervised multilayer perceptron
    Department of Computer Science and Engineering, Jadavpur University, Kolkata 700 032, India
    不详
    不详
    Fundam Inf, 2008, 3-4 (429-442):
  • [10] Robust Instance-Based Semi-Supervised Learning Change Detection for Remote Sensing Images
    Zuo, Yi
    Li, Lingling
    Liu, Xu
    Gao, Zihan
    Jiao, Licheng
    Liu, Fang
    Yang, Shuyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15