Pulse-reverse electrodeposition of Ni-Mo-S nanosheets for energy saving electrochemical hydrogen production assisted by urea oxidation

被引:13
|
作者
Fang, Yu [1 ,2 ]
Li, Mengting [1 ,2 ]
Guo, Xingchen [1 ,2 ]
Duan, Zhiwei [1 ,2 ]
Safikhani, Azim [3 ]
机构
[1] Anyang Normal Univ, Coll Chem & Chem Engn, Key Lab New Optoelect Funct Mat Henan Prov, Anyang 455000, Henan, Peoples R China
[2] Anyang Normal Univ, Coll Chem & Chem Engn, Anyang Ctr Chem & Pharmaceut Engn, Anyang 455000, Henan, Peoples R China
[3] Islamic Azad Univ, Dept Mat Sci & Engn, Saveh Branch, Saveh 9417764958, Iran
基金
中国国家自然科学基金;
关键词
Hydrogen evolution reaction; Urea oxidation reaction; Pulse reveres electrodeposition; Nanosheets; BIFUNCTIONAL ELECTROCATALYST; EFFICIENT ELECTROCATALYSTS; STABLE ELECTROCATALYST; CARBON CLOTH; EVOLUTION; DEPOSITION; COATINGS; ARRAYS; CONVERSION; CATALYSTS;
D O I
10.1016/j.ijhydene.2023.02.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical hydrogen production from water splitting is one of the effective methods for hydrogen production that has recently attracted particular attention. One of the limitations of the electrochemical water splitting method is the slow oxygen evolution reaction (OER), which leads to an increase in overpotential and a decrease in hydrogen production efficiency. Here, Ni-Mo-S ultra-thin nanosheets were synthesized using the pulse reverse electrochemical deposition technique, and then this electrode was used as an electrode material for accelerating hydrogen evolution reaction (HER) and urea oxidation reaction (UOR). Remarkably, the optimized electrode needs only 74 mV to attain the 10 mA cm-2 current density in HER and require only 1.3 V vs RHE potential in the UOR process. Also, results showed that the replacement of the UOR with the OER process resulted in a significant improvement in the electrochemical production of hydrogen in which for delivering the current density of 10 mA cm-2 in overall urea electrolysis, only 1.384 V is needed. In addition, outstanding catalytic stability was obtained, after 50 h electrolysis, the voltage variation was negligible. Such outstanding catalytic activity and stability was due to 3-D ultrathin nanosheets, the synergistic effect between elements, and the superhydrophilic/ superaerophobic nature of fabricated electrode. & COPY; 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:19087 / 19102
页数:16
相关论文
共 50 条
  • [31] Adjustable composition of nickel-iron hydrogen phosphite for urea-assisted energy-saving hydrogen production
    Zhang, Kun
    Li, Jian
    Zhang, Jianping
    Wang, Siqiong
    Liu, Xinyu
    Zou, Tieshan
    Yang, Hanlian
    Han, Xiaotong
    Han, Yongsheng
    CHEMICAL ENGINEERING SCIENCE, 2025, 309
  • [32] Boron-doped iridium nanosheets array for energy- saving hydrogen production by hydrazine-assisted water electrolysis
    Duan, Zhongyao
    Ren, Tianlun
    Xu, You
    Wang, Ziqiang
    Yu, Hongjie
    Deng, Kai
    Wang, Liang
    Wang, Hongjing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (95) : 37045 - 37052
  • [33] Cu-Doping Effect on the Electrocatalytic Properties of Self-Supported Cu-Doped Ni3S2 Nanosheets for Hydrogen Production via Efficient Urea Oxidation
    Wei, Min
    Zhang, Dandan
    Deng, Jie
    Xiao, Xin
    Wang, Lixia
    Wang, Xiaopeng
    Song, Meirong
    Wang, Shun
    Zheng, Xianfu
    Liu, Xiaobiao
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (23) : 7777 - 7786
  • [34] Interface Engineering of VOx /Ni/Ni3N Heterostructures for Electrochemical Urea-Assisted Hydrogen Production
    Wang, Jie
    Wang, Cheng
    Zhang, Xiaorong
    Li, Shiye
    Yang, Chao
    Zhang, Jin
    INORGANIC CHEMISTRY, 2024, 63 (34) : 15804 - 15812
  • [35] Surface confinement of sub-1 nm Pt nanoclusters on 1D/2D NiO nanotubes/nanosheets as an effective electrocatalyst for urea-assisted energy-saving hydrogen production
    Li, Jiaxin
    Lv, Yan
    Wu, Xueyan
    Guo, Xinyu
    Yang, Zhuojun
    Guo, Jixi
    Zhou, Tianhua
    Jia, Dianzeng
    CHINESE JOURNAL OF CATALYSIS, 2025, 69 : 203 - 218
  • [36] Interfacial engineering of hierarchical MoNi4/NiO heterostructure nanosheet arrays as bifunctional electrocatalysts for urea-assisted energy-saving hydrogen production
    Zhao, Yuxin
    Zhou, Peng
    Li, Ziting
    Zhao, Bingxin
    Jiang, Wenyue
    Chen, Xiaoshuang
    Wang, Jinping
    Yang, Rui
    Zuo, Chunling
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 681
  • [37] Hierarchical SiC-Graphene Composite Aerogel-Supported Ni-Mo-S Nanosheets for Efficient pH-Universal Electrocatalytic Hydrogen Evolution
    Peng, Kang
    Wang, Yihan
    Liu, Fuzhu
    Wan, Pengfei
    Wang, Hongjie
    Niu, Min
    Su, Lei
    Zhuang, Lei
    Qin, Yuanbin
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (23) : 27928 - 27940
  • [38] Durable Pulse-Electrodeposited Ni-Fe-S Nanosheets Supported on a Ni-S Three Dimensional Pattern as Robust Bifunctional Electrocatalysts for Hydrogen Evolution and Urea Oxidation Reactions
    Hosseini, Mohammad
    Shahrabi, Taghi
    Darband, Ghasem Barati
    Fathollahi, Amirreza
    LANGMUIR, 2024, 40 (04) : 2028 - 2038
  • [39] Nitrogen-doped Ru film for energy-saving hydrogen production assisted with hydrazine oxidation
    Wang, Ziqiang
    Zhang, Xian
    Tian, Wenjing
    Yu, Hongjie
    Deng, Kai
    Xu, You
    Wang, Xin
    Wang, Hongjing
    Wang, Liang
    CHEMICAL COMMUNICATIONS, 2022, 58 (74) : 10424 - 10427
  • [40] Nanoflowers Ni(OH)x/p-Ni with in-situ formation of high-valence nickel for boosting energy-saving hydrogen production from urea-assisted water splitting
    Xiang, Yang
    Yu, Linjian
    Xiong, Kun
    Zhang, Haidong
    Chen, Jia
    Shi, Xueqing
    Deng, Min
    She, Shiqian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 64 : 360 - 367