A Motion Planning Method for Visual Servoing Using Deep Reinforcement Learning in Autonomous Robotic Assembly

被引:8
作者
Liu, Zhenyu [1 ,2 ]
Wang, Ke [1 ,2 ]
Liu, Daxin [1 ,2 ]
Wang, Qide [1 ,2 ]
Tan, Jianrong [1 ,2 ]
机构
[1] Zhejiang Univ, State Key Lab Comp Aided Design & Comp CAD&CG, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Engn Res Ctr Design Engn & Digital Twin Zhejiang P, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning (DRL); motion planning; robotic assembly; visual servoing (VS); TRACKING; POSITION;
D O I
10.1109/TMECH.2023.3275854
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Assembly positioning by visual servoing (VS) is a basis for autonomous robotic assembly. In practice, VS control suffers potential stability and convergence problems due to image and physical constraints, e.g., field of view constraints, image local minima, obstacle collisions, and occlusion. Therefore, this article proposes a novel deep reinforcement learning-based hybrid visual servoing (DRL-HVS) controller for motion planning of VS tasks. DRLHVS controller takes current observed image features and camera pose as inputs, and the core parameters of hybrid VS are dynamically optimized using a deep deterministic policy gradient (DDPG) algorithm to obtain an optimal motion scheme, considering image/physical constraints and robot motion performance. In addition, an adaptive exploration strategy is proposed to further improve the training efficiency by adaptively tuning the exploration noise parameters. In this way, the offline pretrained DRL-HVS controller in the virtual environment, where the DDPG actor-critic network is continuously optimized, can be quickly deployed to a real robot system for real-time control. Experiments based on an eye-in-hand VS system are conducted with a calibrated HIKVISION RGB camera mounted on the end-effector of a GSK-RB03A1 six degree-of-freedom (6-DoF) robot. Basic VS task experiments show that the proposed controller achieves better performance than the existing methods: the servoing time is 24% smaller than that of the five-dimensional VS method, a 100% success rate with the perturbed ranges of the initial position within 25 mm for translation and 20 degrees for rotation, and a 48% efficiency improvement. Moreover, a planetary gear component assembly process case study, where the robot aims to automatically put the gears on the gear shafts, is conducted to demonstrate the applicability of the proposed method in practice.
引用
收藏
页码:3513 / 3524
页数:12
相关论文
共 50 条
  • [1] Robotic Arm Motion Planning with Autonomous Obstacle Avoidance Based on Deep Reinforcement Learning
    Yang, Shilin
    Wang, Qingling
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3692 - 3697
  • [2] Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles
    Aradi, Szilard
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) : 740 - 759
  • [3] An End-to-End Deep Reinforcement Learning Method for UAV Autonomous Motion Planning
    Cui, Yangjie
    Dong, Xin
    Li, Daochun
    Tu, Zhan
    2022 7TH INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION ENGINEERING, ICRAE, 2022, : 100 - 104
  • [4] A residual reinforcement learning method for robotic assembly using visual and force information
    Zhang, Zhuangzhuang
    Wang, Yizhao
    Zhang, Zhinan
    Wang, Lihui
    Huang, Huang
    Cao, Qixin
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 72 : 245 - 262
  • [5] Adaptive Formation Motion Planning and Control of Autonomous Underwater Vehicles Using Deep Reinforcement Learning
    Hadi, Behnaz
    Khosravi, Alireza
    Sarhadi, Pouria
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2024, 49 (01) : 311 - 328
  • [6] Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning
    You, Changxi
    Lu, Jianbo
    Filev, Dimitar
    Tsiotras, Panagiotis
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 114 : 1 - 18
  • [7] Robotic Motion Planning Based on Deep Reinforcement Learning and Artificial Neural Networks
    Liu, Huashan
    Li, Xiangjian
    Dong, Menghua
    Gu, Yuqing
    Shen, Bo
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024,
  • [8] Visual servoing with deep reinforcement learning for rotor unmanned helicopter
    Hu, Chunyang
    Cao, Wenping
    Ning, Bin
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2022, 19 (02)
  • [9] Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control
    Larouche, Benoit P.
    Zhu, Zheng H.
    AUTONOMOUS ROBOTS, 2014, 37 (02) : 157 - 167
  • [10] Deep-Reinforcement-Learning-Based Motion Planning for a Wide Range of Robotic Structures
    Parak, Roman
    Kudela, Jakub
    Matousek, Radomil
    Juricek, Martin
    COMPUTATION, 2024, 12 (06)