Protective Effect of Artemisinin on Cerebral Ischemic Stroke Via PI3k/Akt/GSK-3ß Signaling Pathway Activation

被引:0
|
作者
Li, Ruilin [1 ,2 ]
Liu, Heng [3 ]
Zhao, Rangyin [2 ]
You, Hong [4 ]
机构
[1] First Peoples Hosp Lanzhou City, Dept Qual control, 1 Wujiayuan West St, Lanzhou 730050, Gansu, Peoples R China
[2] Gansu Univ Chinese Med, Sch Clin Med 1, 35 Dingxi East Rd, Lanzhou 730000, Gansu, Peoples R China
[3] First Peoples Hosp Lanzhou City, Dept Neurol, 1 Wujiayuan West St, Lanzhou 730050, Gansu, Peoples R China
[4] Gansu Prov Hosp, Dept Chinese & French Neurol Rehabil, 204 Donggang West Rd, Lanzhou 730000, Gansu, Peoples R China
来源
LATIN AMERICAN JOURNAL OF PHARMACY | 2023年 / 42卷 / 05期
关键词
artemisinin; cytokines; inflammation; ischemia; natural products; MESENCHYMAL STEM-CELLS; HIPPOCAMPAL; NEUROGENESIS; APOPTOSIS; BRAIN;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
In the present study effect of artemisinin was investigated in vitro on oxygen glucose-deprived BMECs and in vivo in cerebral ischemic stroke rat model. The results demonstrated that artemisinin treatment led to a significant (p < 0.05) decrease in caspase-3 activity in oxygen glucose-deprived rat BMECs. Exposure to artemisinin at 2.5 and 5 mu M concentrations effectively reversed oxygen glucose-deprivation mediated increase in LDH release in rat BMECs. Treatment of the cerebral ischemic stroke rats with artemisinin effectively increased the expression of p-PI3k, p-Akt and p-GSK3 ss proteins in rat brain tissues. Artemisinin treatment caused a significant (p <0.05) decrease in L-selectin, leptin, MCP-1 and TNFa cytokine production in cerebral ischemic stroke rat brain tissues. Treatment of the rats with artemisinin reversed cerebral ischemic stroke mediated suppression of synaptophysin, GAP-43 and MAP-2 expression in brain tissues. The O-atom of carbonyl group in artemisinin interacts with ARG (A: 849) amino acid residue of PI3k (1e7u) protein. In conclusion, artemisinin treatment inhibited ischemia mediated damage to oxygen glucose-deprived rat BMECs in vitro and targeted PI3k/Akt/GSK3 ss activation in vivo in rat model of cerebral ischemic stroke. It targeted production of inflammatory cytokines, up-regulated GAP-43, MAP-2 and synaptophysin expression rat model of cerebral ischemic stroke. Therefore, artemisinin may be developed as an effective chemotherapeutic agent for the treatment of cerebral ischemic stroke.
引用
收藏
页码:1048 / 1055
页数:8
相关论文
共 50 条
  • [21] Sulforaphane Ameliorates the Intestinal Injury in Necrotizing Enterocolitis by Regulating the PI3K/Akt/GSK-3β Signaling Pathway
    Bao, Zhong-Kun
    Mi, Yan-Hong
    Xiong, Xiao-Yu
    Wang, Xin-Hong
    CANADIAN JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2022, 2022
  • [22] Geniposide attenuates epilepsy symptoms in a mouse model through the PI3K/Akt/GSK-3β signaling pathway
    Wei, Hongtao
    Duan, Guanghui
    He, Jianxun
    Meng, Qinglong
    Liu, Yuxian
    Chen, Wanqiang
    Meng, Yongpeng
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2018, 15 (01) : 1136 - 1142
  • [23] TSLP/TSLPR promote angiogenesis following ischemic stroke via activation of the PI3K/AKT pathway
    Yu, Xiang
    Peng, Yi
    Liang, Hui
    Fu, Ke
    Zhao, Zhihong
    Xie, Chun
    Zhou, Lin
    Zhang, Kangnan
    MOLECULAR MEDICINE REPORTS, 2018, 17 (02) : 3411 - 3417
  • [24] Aconitum coreanum alleviates cerebral ischemic stroke through the PI3K/Akt signaling pathway in gerbils model
    Jia, Ru
    Cai, Qian
    Qu, Yang
    HELIYON, 2024, 10 (02)
  • [25] Ginsenoside Rb1 promotes the growth of mink hair follicle via PI3K/AKT/GSK-3β signaling pathway
    Zhang, Haihua
    Su, Yongmei
    Wang, Jiantao
    Gao, Ying
    Yang, Fuhe
    Li, Guangyu
    Shi, Qiumei
    LIFE SCIENCES, 2019, 229 : 210 - 218
  • [26] Astaxanthin alleviates spinal cord ischemia-reperfusion injury via activation of PI3K/Akt/GSK-3β pathway in rats
    Jian Fu
    Haibin Sun
    Haofei Wei
    Mingjie Dong
    Yongzhe Zhang
    Wei Xu
    Yanwei Fang
    Jianhui Zhao
    Journal of Orthopaedic Surgery and Research, 15
  • [27] Astaxanthin alleviates spinal cord ischemia-reperfusion injury via activation of PI3K/Akt/GSK-3β pathway in rats
    Fu, Jian
    Sun, Haibin
    Wei, Haofei
    Dong, Mingjie
    Zhang, Yongzhe
    Xu, Wei
    Fang, Yanwei
    Zhao, Jianhui
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2020, 15 (01)
  • [28] Sevoflurane Postconditioning Induces Neuroprotection against Transient Cerebral Ischemia: Role of PI3K/Akt/GSK-3β Pathway
    Ye, R.
    Zhao, G.
    CEREBROVASCULAR DISEASES, 2011, 32 : 8 - 9
  • [29] Neuroprotective effect of apo-9′-fucoxanthinone against cerebral ischemia injury by targeting the PI3K/AKT/GSK-3β pathway
    Qi, Yu
    Tang, Shuhua
    Jin, Shengjie
    Wang, Jiabao
    Zhang, Yuanlong
    Xu, Xiao
    Zhu, Haoyun
    Zhang, Jingwen
    Xu, Xiangwei
    Zhao, Min
    Zhu, Haoru
    Yan, Pengcheng
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2025, 991
  • [30] Syringic acid mitigates myocardial ischemia reperfusion injury by activating the PI3K/Akt/GSK-3β signaling pathway
    Liu, Gen
    Zhang, Bo-fang
    Hu, Qi
    Liu, Xiao-pei
    Chen, Jing
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 531 (02) : 242 - 249