Investigating the best automatic programming method in predicting the aerodynamic characteristics of wind turbine blade

被引:7
|
作者
Arslan, Sibel [1 ]
Koca, Kemal [2 ]
机构
[1] Sivas Cumhuriyet Univ, Dept Software Engn, TR-58140 Sivas, Turkiye
[2] Abdullah Gul Univ, Dept Mech Engn, TR-38080 Kayseri, Turkiye
关键词
Automatic programming; Genetic programming; Artificial bee colony programming; Aerodynamic coefficients; Power efficiency; Wind turbine blade; PERFORMANCE ANALYSIS; AIRFOIL; RATIO;
D O I
10.1016/j.engappai.2023.106210
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic programming (AP) is a subfield of artificial intelligence (AI) that can automatically generate computer programs and solve complex engineering problems. This paper presents the accuracy of four different AP methods in predicting the aerodynamic coefficients and power efficiency of the AH 93-W-145 wind turbine blade at different Reynolds numbers and angles of attack. For the first time in the literature, Genetic Programming (GP) and Artificial Bee Colony Programming (ABCP) methods are used for such predictions. In addition, Airfoil Tools and JavaFoil are utilized for airfoil selection and dataset generation. The Reynolds number and angle of attack of the wind turbine airfoil are input parameters, while the coefficients CL, CD and power efficiency are output parameters. The results show that while all four methods tested in the study accurately predict the aerodynamic coefficients, Multi Gene GP (MGGP) method achieves the highest accuracy for R2Train and R2Test (R2 values in CD Train: 0.997-Test: 0.994, in CL Train: 0.991-Test: 0.990, in PE Train: 0.990-Test: 0.970). By providing the most precise model for properly predicting the aerodynamic performance of higher cambered wind turbine airfoils, this innovative and comprehensive study will close a research gap. This will make a significant contribution to the field of AI and aerodynamics research without experimental cost, labor, and additional time.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Study on Aerodynamic Characteristics of Flexible Blade Airfoils of Wind Turbines
    Deng Y.
    Gong J.
    He Y.
    Chen Y.
    Luo Z.
    Chen, Yan (ychen@stu.edu.cn), 1600, Chinese Mechanical Engineering Society (28): : 2217 - 2223
  • [32] Design optimization of a wind turbine blade to reduce the fluctuating unsteady aerodynamic load in turbulent wind
    Jeong, Jihoon
    Park, Kyunghyun
    Jun, Sangook
    Song, Kisun
    Lee, Dong-Ho
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2012, 26 (03) : 827 - 838
  • [33] Design optimization of a wind turbine blade to reduce the fluctuating unsteady aerodynamic load in turbulent wind
    Jihoon Jeong
    Kyunghyun Park
    Sangook Jun
    Kisun Song
    Dong-Ho Lee
    Journal of Mechanical Science and Technology, 2012, 26 : 827 - 838
  • [34] Study on A Novel Testing System for Aerodynamic Performance of Magnus Wind Turbine Blade
    Yao, Qi
    Yao, Yingxue
    Zhou, Liang
    Wu, Jinming
    Li, Jianguang
    MATERIALS, MECHANICAL ENGINEERING AND MANUFACTURE, PTS 1-3, 2013, 268-270 : 1610 - 1614
  • [35] Investigation of leading-edge slat on aerodynamic performance of wind turbine blade
    Chen, Tao
    Jiang, Xiao
    Wang, Haipeng
    Li, Qian
    Li, Mingzhou
    Wu, Zhou
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (08) : 1329 - 1343
  • [36] Improvement of aerodynamic performance of an offshore wind turbine blade by moving surface mechanism
    Salimipour, Erfan
    Yazdani, Shima
    OCEAN ENGINEERING, 2020, 195
  • [37] Modeling of a Wind Turbine Blade Coupled with Aerodynamic Loads in Passive Damping Control
    Guo Dawei
    Xie Zhengchao
    Zhang Long
    ADVANCED MATERIALS, MECHANICS AND INDUSTRIAL ENGINEERING, 2014, 598 : 174 - 180
  • [38] Design of wind turbine blade with thick airfoils and flatback and its aerodynamic characteristic
    Xu, Lijun
    Xu, Lei
    Zhang, Lei
    Yang, Ke
    Open Mechanical Engineering Journal, 2015, 9 (01): : 910 - 915
  • [39] The effect of a leading edge erosion shield on the aerodynamic performance of a wind turbine blade
    Kyle, Ryan
    Wang, Fan
    Forbes, Brian
    WIND ENERGY, 2020, 23 (04) : 953 - 966
  • [40] Reynolds Number Effect on the Optimization of a Wind Turbine Blade for Maximum Aerodynamic Efficiency
    Ge, Mingwei
    Tian, De
    Deng, Ying
    JOURNAL OF ENERGY ENGINEERING, 2016, 142 (01)