Closed-Loop Graphite Recycling from Spent Lithium-Ion Batteries through Bioleaching

被引:17
|
作者
Roy, Joseph Jegan [1 ,2 ,3 ]
Tang, Ernest Jun Jie [3 ]
Do, Minh Phuong [1 ]
Cao, Bin [2 ,4 ]
Srinivasan, Madhavi [1 ,3 ]
机构
[1] Nanyang Technol Univ, Energy Res Inst NTU ERI N, SCARCE Lab, Singapore 637459, Singapore
[2] Nanyang Technol Univ, Singapore Ctr Environm Life Sci Engn, Singapore 637551, Singapore
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[4] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
bioleaching; graphite; close-loop; recycling; lithium-ion batteries; RECOVERY; COBALT; MANGANESE; METALS;
D O I
10.1021/acssuschemeng.2c07262
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Research into the recycling of electrode materials has gained attention due to the exponential increase in spent and discarded lithium-ion batteries (LIBs). While cathode electrode recovery has perennially been a research priority due to its economic benefits, anode electrode (graphite) recycling has yet to be accomplished. Currently, the focus has shifted to recycling the anodes from spent LIBs to deal with the scarcity of graphite resources and protect the environment because the anode is a crucial part of a LIB. The primary goal of this research is to recycle and regenerate anode graphite from the bioleaching residue. Unlike other hydrometallurgical LIB recycling, the bioleaching residue contains a considerable amount of iron salts with unleached cathode metal. Graphite was recycled using mild acid cleaning to remove vast amounts of iron salts and unleached cathode materials, followed by calcination treatments. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis revealed that the regenerated graphite had a purity of 99.78%. The morphology and structure of the regenerated graphite were confirmed to be identical to the commercial material using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. The regenerated graphite samples show excellent electrochemical performance, with a charging/discharging capacity higher than 400 mAh/g and a retention rate of 100% after 200 cycles, surpassing commercial graphite (366 mAh/g).
引用
收藏
页码:6567 / 6577
页数:11
相关论文
共 50 条
  • [21] Review on the recycling of anode graphite from waste lithium-ion batteries
    Islam, Md Shariful
    Kushwaha, Amanendra K.
    Misra, Manoranjan
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2024, 26 (06) : 3341 - 3369
  • [22] Should we recycle the graphite from spent lithium-ion batteries? The untold story of graphite with the importance of recycling
    Natarajan, Subramanian
    Divya, Madhusoodhanan Lathika
    Aravindan, Vanchiappan
    JOURNAL OF ENERGY CHEMISTRY, 2022, 71 : 351 - 369
  • [23] DEVELOPMENT OF A SCHEME FOR THE UTILISATION OF SPENT LITHIUM-ION BATTERIES BY BIOLEACHING
    Svetkina, Olena Y.
    Koveria, Andrii S.
    Ovcharenko, Alina O.
    V. Tarasova, Hanna
    Panteleieva, Olha S.
    JOURNAL OF CHEMISTRY AND TECHNOLOGIES, 2023, 31 (03): : 590 - 600
  • [24] Improved hydrometallurgical extraction of valuable metals from spent lithium-ion batteries via a closed-loop process
    Fu, Yuanpeng
    He, Yaqun
    Li, Jinlong
    Qu, Lili
    Yang, Yong
    Guo, Xuanchen
    Xie, Weining
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 847
  • [25] Environmental Impacts of Graphite Recycling from Spent Lithium-Ion Batteries Based on Life Cycle Assessment
    Rey, Irene
    Vallejo, Claudia
    Santiago, Gabriel
    Iturrondobeitia, Maider
    Lizundia, Erlantz
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (43): : 14488 - 14501
  • [26] Recycling of graphite anode from spent lithium-ion batteries: Advances and perspectives
    Qiao, Yu
    Zhao, Huaping
    Shen, Yonglong
    Li, Liqiang
    Rao, Zhonghao
    Shao, Guosheng
    Lei, Yong
    ECOMAT, 2023, 5 (04)
  • [27] Preparing graphene from anode graphite of spent lithium-ion batteries
    Zhang, Wenxuan
    Liu, Zhanpeng
    Xia, Jing
    Li, Feng
    He, Wenzhi
    Li, Guangming
    Huang, Juwen
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2017, 11 (05)
  • [28] Recycling Chain for Spent Lithium-Ion Batteries
    Werner, Denis
    Peuker, Urs Alexander
    Muetze, Thomas
    METALS, 2020, 10 (03)
  • [29] Recycling of Spent Graphite from Lithium-Ion Batteries for Aqueous Zn Dual-Ion Batteries
    Cai, Wenqin
    Zhang, Linghong
    Chen, Kai
    Xiao, Meng
    Chen, Ting
    Dong, Xiaodong
    Pu, Zewei
    Wan, Fang
    Guo, Xiaodong
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (38) : 50897 - 50904
  • [30] Recycling valuable materials from the cathodes of spent lithium-ion batteries: A comprehensive review
    Yasa, Sezgin
    Aydin, Ozan
    Al-Bujasim, Mohammed
    Birol, Burak
    Gencten, Metin
    JOURNAL OF ENERGY STORAGE, 2023, 73