Fully Data-Driven Time-Delay Interferometry with Time-Varying Delays

被引:4
|
作者
Baghi, Quentin [1 ]
Baker, John G. [2 ]
Slutsky, Jacob [2 ]
Thorpe, James Ira [2 ]
机构
[1] Univ Paris Saclay, IRFU, CEA, F-91191 Gif Sur Yvette, France
[2] Goddard Space Flight Ctr, Gravitat Astrophys Lab, Mail Code 663,8800 Greenbelt Rd, Greenbelt, MD 20771 USA
基金
美国国家航空航天局;
关键词
data analysis; gravitational waves; laser frequency noise; space-based detectors; time-delay interferometry; ARM;
D O I
10.1002/andp.202200447
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Raw space-based gravitational-wave data like laser interferometer space antenna's (LISA) phase measurements are dominated by laser frequency noise. The standard technique to make this data usable for gravitational-wave detection is time-delay interferometry (TDI), which cancels laser noise terms by forming suitable combinations of delayed measurements. To do so, TDI relies on inter-spacecraft distances and on how laser noise enters the interferometric data. The basic concepts of an alternative approach which does not rely on independent knowledge of temporal correlations in the dominant noise recently introduced. Instead, this automated principal component interferometry (aPCI) approach only assumes that one can produce some linear combinations of the temporally nearby regularly spaced phase measurements, which cancel the laser noise. Then the data is let to reveal those combinations, thus providing a set of laser-noise-free data channels. The authors' previous approach relies on the simplifying additional assumption that the filters which lead to the laser-noise-free data streams are time-independent. In LISA, however, these filters will vary as the constellation armlengths evolve. Here, a generalization of the basic aPCI concept compatible with data dominated by a still unmodeled but slowly varying dominant noise covariance is discussed. Despite its independence on any model, aPCI successfully mitigates laser frequency noise below the other noises' level, and its sensitivity to gravitational waves is the same as the state-of-the-art second-generation TDI, up to a 2% error.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] ISS and iISS for discontinuously time-varying time-delay systems
    Mancilla-Aguilar, Jose L.
    Haimovich, Hernan
    IFAC PAPERSONLINE, 2023, 56 (02): : 3893 - 3898
  • [22] Stability Analysis of Time-Varying Neutral Time-Delay Systems
    Mazenc, Frederic
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (02) : 540 - 546
  • [23] Data-Driven Injection Attack Against Discrete-Time Intelligent Automation Systems With Slowly Time-Varying Delays
    Gao, Sheng
    Zhang, Hao
    Wang, Zhuping
    Huang, Haohan
    Yan, Huaicheng
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2023, : 1 - 13
  • [24] Time-delay systems with a controlled time-varying delay: stability analysis and applications
    Michiels, W
    Van Assche, V
    Niculescu, SI
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 4521 - 4526
  • [25] Data-driven Prediction of EVAR with Confidence in Time-varying Datasets
    Axelrod, Allan
    Carlone, Luca
    Chowdhary, Girish
    Karaman, Sertac
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 5833 - 5838
  • [26] Robust stability of nonlinear time-delay systems with interval time-varying delay
    Orihuela, L.
    Millan, P.
    Vivas, C.
    Rubio, F. R.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (07) : 709 - 724
  • [27] Direct Data-Driven Control of Linear Time-Varying Systems
    Nortmann, Benita
    Mylvaganam, Thulasi
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (08) : 4888 - 4895
  • [28] Periodic event-triggered data-driven control for networked control systems with time-varying delays
    Wei, Zi-Jie
    Liu, Kun-Zhi
    Wang, Yan-Wei
    Pan, Zhuo-Rui
    Wen, Si-Xin
    Sun, Xi-Ming
    SYSTEMS & CONTROL LETTERS, 2024, 193
  • [29] Fixed-Time Stability of Time-Varying Hybrid Systems with Time-Delay
    Chen, Guopei
    Yang, Ying
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (05) : 2758 - 2781
  • [30] Fixed-Time Stability of Time-Varying Hybrid Systems with Time-Delay
    Guopei Chen
    Ying Yang
    Circuits, Systems, and Signal Processing, 2024, 43 : 2758 - 2781