Big Data and Machine Learning to Improve European Grapevine Moth (Lobesia botrana) Predictions

被引:3
作者
Balduque-Gil, Joaquin [1 ]
Lacueva-Perez, Francisco J. [2 ]
Labata-Lezaun, Gorka [2 ]
del-Hoyo-Alonso, Rafael [2 ]
Ilarri, Sergio [3 ]
Sanchez-Hernandez, Eva [4 ]
Martin-Ramos, Pablo [4 ]
Barriuso-Vargas, Juan J. [1 ]
机构
[1] Univ Zaragoza, AgriFood Inst Aragon IA2, Dept Agr Sci & Nat Environm, Ave Miguel Servet 177, Zaragoza 50013, Spain
[2] Inst Tecnol Aragon, Dept Big Data & Cognit Syst, ITAINNOVA, Maria Luna 7 8, Zaragoza 50018, Spain
[3] Univ Zaragoza, Dept Informat Ingn Sistemas, Inst Invest Ingn Aragon I3A, Maria Luna 1, Zaragoza 50018, Spain
[4] Univ Valladolid, Dept Agr & Forestry Engn, ETSIIAA, Ave Madrid 44, Palencia 34004, Spain
来源
PLANTS-BASEL | 2023年 / 12卷 / 03期
关键词
Lobesia botrana; pest monitoring; predictive models; IoT; weather data; data-driven models; machine learning; integrated pest management; FLIGHT ACTIVITY; CLIMATE-CHANGE; SCHIFF; LEP; TORTRICIDAE; LEPIDOPTERA; DEN; TEMPERATURE; PHENOLOGY; MODELS; SIMULATION;
D O I
10.3390/plants12030633
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Machine Learning (ML) techniques can be used to convert Big Data into valuable information for agri-environmental applications, such as predictive pest modeling. Lobesia botrana (Denis & Schiffermuller) 1775 (Lepidoptera: Tortricidae) is one of the main pests of grapevine, causing high productivity losses in some vineyards worldwide. This work focuses on the optimization of the Touzeau model, a classical correlation model between temperature and L. botrana development using data-driven models. Data collected from field observations were combined with 30 GB of registered weather data updated every 30 min to train the ML models and make predictions on this pest's flights, as well as to assess the accuracy of both Touzeau and ML models. The results obtained highlight a much higher F1 score of the ML models in comparison with the Touzeau model. The best-performing model was an artificial neural network of four layers, which considered several variables together and not only the temperature, taking advantage of the ability of ML models to find relationships in nonlinear systems. Despite the room for improvement of artificial intelligence-based models, the process and results presented herein highlight the benefits of ML applied to agricultural pest management strategies.
引用
收藏
页数:16
相关论文
共 85 条
  • [1] The entomopathogenic fungus, Metarhizium anisopliae for the European grapevine moth, Lobesia botrana Den. & Schiff. (Lepidoptera: Tortricidae) and its effect to the phytopathogenic fungus, Botrytis cinerea
    Aguilera Sammaritano, Juan
    Deymie, Maria
    Herrera, Maria
    Vazquez, Fabio
    Cuthbertson, Andrew G. S.
    Lopez-Lastra, Claudia
    Lechner, Bernardo
    [J]. EGYPTIAN JOURNAL OF BIOLOGICAL PEST CONTROL, 2018, 28 : 1 - 8
  • [2] Semi physical growth model of Lobesia botrana under laboratory conditions for Argentina's Cuyo region
    Aguirre-Zapata, Estefania
    Morales, Humberto
    V. Dagatti, Carla
    di Sciascio, Fernando
    Amicarelli, Adriana N.
    [J]. ECOLOGICAL MODELLING, 2022, 464
  • [3] Akyuz F.A., 2015, J. Serv. Clim., V2015, P1, DOI [10.46275/JoASC.2015.12.001, DOI 10.46275/JOASC.2015.12.001]
  • [4] A new model for predicting the flight activity of Lobesia botrana (Lepidoptera: Tortricidae)
    Amo-Salas, Mariano
    Ortega-Lopez, Vanesa
    Harman, Radoslav
    Alonso-Gonzalez, Agustin
    [J]. CROP PROTECTION, 2011, 30 (12) : 1586 - 1593
  • [5] Cold hardiness of diapausing and non-diapausing pupae of the European grapevine moth, Lobesia botrana
    Andreadis, SS
    Milonas, PG
    Savopoulou-Soultani, M
    [J]. ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, 2005, 117 (02) : 113 - 118
  • [6] [Anonymous], COP CLIM DAT STOR
  • [7] [Anonymous], 2017, Encyclopedia of machine learning and data mining, DOI DOI 10.1007/978-1-4899-7687-150
  • [8] [Anonymous], AGR INF SYST IRR HOM
  • [9] [Anonymous], SCIK LEARN HOM
  • [10] Sex Pheromone Aerosol Devices for Mating Disruption: Challenges for a Brighter Future
    Benelli, Giovanni
    Lucchi, Andrea
    Thomson, Donald
    Ioriatti, Claudio
    [J]. INSECTS, 2019, 10 (10)