Birth of the Hydrated Electron via Charge-Transfer-to-Solvent Excitation of Aqueous Iodide

被引:15
作者
Carter-Fenk, Kevin [1 ,2 ,3 ]
Johnson, Britta A. [1 ]
Herbert, John M. [3 ]
Schenter, Gregory K. [1 ]
Mundy, Christopher J. [1 ,4 ]
机构
[1] Phys Sci Div, Pacific Northwest Natl Lab, Richland, WA 99352 USA
[2] Univ Calif, Dept Chem, Berkeley, CA 94720 USA
[3] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA
[4] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; INTEGRAL MONTE-CARLO; LIQUID WATER; SOLVATED ELECTRONS; EXCITED-STATES; RELAXATION DYNAMICS; MOLECULAR-DYNAMICS; EXCESS ELECTRONS; IONIZATION ENERGIES; PULSE-RADIOLYSIS;
D O I
10.1021/acs.jpclett.2c03460
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A primary means to generate hydrated electrons in laboratory experiments is excitation to the charge-transfer-to-solvent (CTTS) state of a solute such as I-(aq), but this initial step in the genesis of e-(aq) has never been simulated directly using ab initio molecular dynamics. We report the first such simulations, combining ground-and excited-state simulations of I-(aq) with a detailed analysis of fluctuations in the Coulomb potential experienced by the nascent solvated electron. What emerges is a two-step picture of the evolution of e-(aq) starting from the CTTS state: I-(aq) + h nu-* I-*(aq)-* I center dot(aq) + e-(aq). Notably, the equilibrated ground state of e-(aq) evolves from I-*(aq) without any nonadiabatic transitions, simply as a result of solvent reorganization. The methodology used here should be applicable to other photochemical electron transfer processes in solution, an important class of problems directly relevant to photocatalysis and energy transfer.
引用
收藏
页码:870 / 878
页数:9
相关论文
共 107 条
  • [1] Charge Separation and Charge Transfer in the Low-Lying Excited States of Pentacene
    Alam, Bushra
    Morrison, Adrian F.
    Herbert, John M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (45) : 24653 - 24666
  • [2] Precursors of Solvated Electrons in Radiobiological Physics and Chemistry
    Alizadeh, Elahe
    Sanche, Leon
    [J]. CHEMICAL REVIEWS, 2012, 112 (11) : 5578 - 5602
  • [3] Absolute Energy Levels of Liquid Water
    Ambrosio, Francesco
    Guo, Zhendong
    Pasquarello, Alfredo
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (12): : 3212 - 3216
  • [4] Electronic Levels of Excess Electrons in Liquid Water
    Ambrosio, Francesco
    Miceli, Giacomo
    Pasquarello, Alfredo
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (09): : 2055 - 2059
  • [5] Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals
    Ambrosio, Francesco
    Miceli, Giacomo
    Pasquarello, Alfredo
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (24)
  • [6] Spontaneously Forming Dendritic Voids in Liquid Water Can Host Small Polymers
    Ansari, Narjes
    Laio, Alessandro
    Hassanali, Ali
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (18): : 5585 - 5591
  • [7] Baer MD, 2013, FARADAY DISCUSS, V160, P89, DOI [10.1039/c2fd20113e, 10.1039/C2FD20113E]
  • [8] Toward an Understanding of the Specific Ion Effect Using Density Functional Theory
    Baer, Marcel D.
    Mundy, Christopher J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (09): : 1088 - 1093
  • [9] Potential traps for an excess electron in liquid water: the trap lifetime distributions
    Bartczak, WM
    Pernal, K
    [J]. RESEARCH ON CHEMICAL INTERMEDIATES, 2001, 27 (7-8) : 891 - 900
  • [10] Potential traps for an excess electron in liquid water. Geometry, energy distributions and lifetime
    Bartczak, WM
    Pernal, K
    [J]. COMPUTERS & CHEMISTRY, 2000, 24 (3-4): : 469 - 482