On a Group-Theoretical Generalization of the Gauss Formula

被引:0
作者
Fasola, Georgiana [1 ]
Tarnauceanu, Marius [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Blvd Carol 1 11, Iasi 700506, Romania
关键词
Gauss formula; Euler's totient function; automorphism group; finite group; cyclic group; abelian group; FINITE-GROUPS; AUTOMORPHISM-GROUPS; ORDERS; INEQUALITY; NUMBERS;
D O I
10.21136/CMJ.2022.0225-22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss a group-theoretical generalization of the well-known Gauss formula involving the function that counts the number of automorphisms of a finite group. This gives several characterizations of finite cyclic groups.
引用
收藏
页码:311 / 317
页数:7
相关论文
共 14 条
[1]   Harmonic numbers and finite groups [J].
Baishya, Sekhar Jyoti ;
Das, Ashish Kumar .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2014, 132 :33-43
[2]   Revisiting the Leinster groups [J].
Baishya, Sekhar Jyoti .
COMPTES RENDUS MATHEMATIQUE, 2014, 352 (01) :1-6
[3]   Automorphisms of direct products of finite groups [J].
Bidwell, J. N. S. ;
Curran, M. J. ;
McCaughan, D. J. .
ARCHIV DER MATHEMATIK, 2006, 86 (06) :481-489
[4]   On the orders of automorphism groups of finite groups [J].
Bray, JN ;
Wilson, RA .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :381-385
[5]   On the orders of automorphism groups of finite groups. II [J].
Bray, John N. ;
Wilson, Robert A. .
JOURNAL OF GROUP THEORY, 2006, 9 (04) :537-545
[6]   Perfect Numbers and Finite Groups [J].
De Medts, Tom ;
Maroti, Attila .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2013, 129 :17-33
[7]   Finite groups determined by an inequality of the orders of their subgroups [J].
De Medts, Tom ;
Tarnauceanu, Marius .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2008, 15 (04) :699-704
[8]   FINITE p-GROUPS WITH SMALL AUTOMORPHISM GROUP [J].
Gonzalez-Sanchez, Jon ;
Jaikin-Zapirain, Andrei .
FORUM OF MATHEMATICS SIGMA, 2015, 3
[9]   Automorphisms of finite Abelian groups [J].
Hillar, Christopher J. ;
Rhea, Darren L. .
AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (10) :917-923
[10]  
Isaacs IM., 2008, Finite Group Theory, V92