A new 4D hyperchaotic system and its control

被引:12
作者
Cui, Ning [1 ]
Li, Junhong [1 ]
机构
[1] Hanshan Normal Univ, Sch Math & Stat, Chaozhou 521041, Guangdong, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 01期
关键词
hyperchaos; Lyapunov exponents; bifurcation; hyperchaos control; PROJECTIVE SYNCHRONIZATION; CHAOS CONTROL; QI SYSTEM; ATTRACTORS;
D O I
10.3934/math.2023044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new four-dimensional (4D) hyperchaotic system by introducing a linear controller to 3D chaotic Qi system. Based on theoretical analysis and numerical simulations, the dynamical behaviors of the new system are studied including dissipativity and invariance, equilibria and their stability, quasi-periodic orbits, chaotic and hyperchaotic attractors. In addition, the Hopf bifurcation at the zero equilibrium point and hyperchaos control of the system are investigated. The numerical simulations, including phase diagram, Lyapunov exponent spectrum, bifurcations and Poincare ' maps are carried out in order to analyze and verify the complex phenomena of the 4D hyperchaotic system.
引用
收藏
页码:905 / 923
页数:19
相关论文
共 33 条
[1]   Hyperchaotic and quasiperiodic behaviors of a two-photon laser with multi-intermediate states [J].
Barakat, Elsayed ;
Abdel-Aty, M. ;
El-Kalla, I. L. .
CHAOS SOLITONS & FRACTALS, 2021, 152
[2]   Chaos control in a pendulum system with excitations and phase shift [J].
Chen, Xianwei ;
Jing, Zhujun ;
Fu, Xiangling .
NONLINEAR DYNAMICS, 2014, 78 (01) :317-327
[3]   Dynamics of a hyperchaotic Lorenz-type system [J].
Chen, Yuming ;
Yang, Qigui .
NONLINEAR DYNAMICS, 2014, 77 (03) :569-581
[4]   Competitive modes and estimation of ultimate bound sets for a chaotic dynamical financial system [J].
Chien, Fengsheng ;
Chowdhury, A. Roy ;
Nik, Hassan Saberi .
NONLINEAR DYNAMICS, 2021, 106 (04) :3601-3614
[5]   ROUTH-HURWITZ CRITERION IN THE EXAMINATION OF EIGENVALUES OF A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL-EQUATIONS [J].
DEJESUS, EX ;
KAUFMAN, C .
PHYSICAL REVIEW A, 1987, 35 (12) :5288-5290
[6]   Communication scheme using a hyperchaotic semiconductor laser model: Chaos shift key revisited [J].
Fataf, N. A. A. ;
Palit, Sanjay Kumar ;
Mukherjee, Sayan ;
Said, M. R. M. ;
Son, Doan Hoai ;
Banerjee, Santo .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (11)
[7]  
Guckenheimer J., 1983, Applied Mathematical Sciences, P117, DOI [10.1007/978-1-4612-1140-2, DOI 10.1007/978-1-4612-1140-2, 10.1007/978-1-4612-1140-2_3]
[8]   A financial hyperchaotic system with coexisting attractors: Dynamic investigation, entropy analysis, control and synchronization [J].
Jahanshahi, Hadi ;
Yousefpour, Amin ;
Wei, Zhouchao ;
Alcaraz, Raul ;
Bekiros, Stelios .
CHAOS SOLITONS & FRACTALS, 2019, 126 :66-77
[9]   Projective synchronization of a new hyperchaotic Lorenz system [J].
Jia, Qiang .
PHYSICS LETTERS A, 2007, 370 (01) :40-45
[10]   Dynamical analysis, circuit implementation and synchronization of a new memristive hyperchaotic system with coexisting attractors [J].
Lai, Qiang ;
Wan, Zhiqiang ;
Kuate, Paul Didier Kamdem ;
Fotsin, Hilaire .
MODERN PHYSICS LETTERS B, 2021, 35 (10)