A HC model with countable set of spin values: Uncountable set of Gibbs measures

被引:6
|
作者
Rozikov, U. A. [1 ]
Haydarov, F. H.
机构
[1] VI Romanovskiy Inst Math, 9 Univ Str, Tashkent 100174, Uzbekistan
关键词
Cayley tree; Gibbs measure; HC model; dynamics; Bleher-Ganikhodjaev construction; ISING-MODEL; HARD-CORE; STATE;
D O I
10.1142/S0129055X22500398
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a hard core (HC) model with a countable set Z of spin values on the Cayley tree. This model is defined by a countable set of parameters lambda(i) > 0, i is an element of Z\{0}. For all possible values of parameters, we give limit points of the dynamical system generated by a function which describes the consistency condition for finite-dimensional measures. Also, we prove that every periodic Gibbs measure for the given model is either translation-invariant or periodic with period two. Moreover, we construct uncountable set of Gibbs measures for this HC model.
引用
收藏
页数:17
相关论文
共 50 条