Using Deep Convolutional Neural Networks to Classify the Discharge Current of a Cold Atmospheric-Pressure Plasma Jet

被引:8
|
作者
Chang, Jerry [1 ]
Niu, Po-Han [1 ]
Chen, Chin-Wen [1 ]
Cheng, Yun-Chien [1 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Coll Engn, Dept Mech Engn, Hsinchu 30010, Taiwan
关键词
Discharges (electric); Plasmas; Deep learning; Real-time systems; Helium; Nitrogen; Glow discharges; Atmospheric-pressure plasma jet (APPJ); convolutional neural network (CNN); current classification; deep learning; discharge type; working gas; MACHINE; MODEL;
D O I
10.1109/TPS.2022.3185029
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Atmospheric-pressure plasma discharge can vary with conditions, such as working gas or discharge type, and the resulting discharge current has quite different electrical features. Hence, the provision of real-time and cost-effective monitoring of atmospheric-pressure plasma discharge is possible via current classification with a deep learning model. In addition, the current generated by an atmospheric-pressure plasma jet (APPJ) can be easily obtained, so it is suitable to use a data-driven convolutional neural network (CNN) to extract and analyze the current characteristics. This study presents two CNN classification applications of the current generated by an APPJ. First, we used the time-series classification approach known as InceptionTime to predict the APPJ working gas from helium, argon, and nitrogen. Second, InceptionTime was also used to predict the APPJ discharge type as Townsend discharge or glow discharge. InceptionTime leveraged the use of the inception module to reduce dimensions and avoid overfitting. Moreover, the use of four different sizes of filters along with the maxpooling layer provided sufficient receptive fields to analyze the entire current signal. We achieved 100% accuracy on a testing set of 1125 current signals, which did not include the training data during the working gas prediction; we also achieved 86.3% accuracy on a testing set of 750 current signals, which did not include the training data during the discharge type prediction. This study proves that the CNN can extract features from the discharge current waveforms and successfully predict the discharge type and working gas of an APPJ. The high-speed computing characteristics of deep learning may also facilitate real-time monitoring or diagnosis of APPJ.
引用
收藏
页码:311 / 319
页数:9
相关论文
共 50 条
  • [21] A Planar Source of Atmospheric-Pressure Plasma Jet
    O. S. Zhdanova
    V. S. Kuznetsov
    V. A. Panarin
    V. S. Skakun
    E. A. Sosnin
    V. F. Tarasenko
    Plasma Physics Reports, 2018, 44 : 153 - 156
  • [22] Etching materials with an atmospheric-pressure plasma jet
    Jeong, JY
    Babayan, SE
    Tu, VJ
    Park, J
    Henins, I
    Hicks, RF
    Selwyn, GS
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 1998, 7 (03): : 282 - 285
  • [23] Surface treatment of glass and poly(dimethylsiloxane) using atmospheric-pressure plasma jet and analysis of discharge characteristics
    Seo, Kwon-Sang
    Cha, Ju-Hong
    Han, Moon-Ki
    Ha, Chang-Seung
    Kim, Dong-Hyun
    Lee, Hae June
    Lee, Ho-Jun
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (01)
  • [24] Plasma polymerization using helium atmospheric-pressure plasma jet with heptylamine monomer
    Doherty, Kyle G.
    Oh, Jun-Seok
    Unsworth, Paul
    Sheridan, Carl M.
    Weightman, Peter
    Bradley, James W.
    Williams, Rachel L.
    PLASMA PROCESSES AND POLYMERS, 2019, 16 (04)
  • [25] The influence of gas humidity on the discharge properties of a microwave atmospheric-pressure coaxial plasma jet
    Yu, Jie
    Zhang, Wencong
    Wu, Xiao
    Wu, Li
    Tao, Junwu
    Huang, Kama
    AIP ADVANCES, 2021, 11 (02)
  • [26] Preparation of Nanoparticles Copper Oxide using an Atmospheric-Pressure Plasma Jet
    Anber, Ahmed A.
    Essa, Mohammed Sh
    Kadhim, Ghada A.
    Hashim, Shaymaa S.
    SIXTH SCIENTIFIC CONFERENCE RENEWABLE ENERGY AND ITS APPLICATIONS, 2018, 1032
  • [27] Molecular Modification of Zeolites with Cold Atmospheric-Pressure Plasma Jet: A Green and Facile Strategy
    Batur, Jenaidullah
    Duan, Zunbin
    Jiang, Min
    Li, Rui
    Xie, Yabo
    Yu, Xue-Feng
    Li, Jian-Rong
    CHEMISTRY OF MATERIALS, 2023, 35 (10) : 3867 - 3879
  • [28] Atmospheric-pressure plasma-assisted powder jet deposition for thick hydroxyapatite film formation -Effect of atmospheric-pressure plasma jet
    Shimada, Keita
    Morita, Ryuki
    Mizutani, Masayoshi
    Kuriyagawa, Tsunemoto
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2023, 79 : 43 - 51
  • [29] The Interaction of a Direct-Current Cold Atmospheric-Pressure Air Plasma With Bacteria
    Feng, Hongqing
    Sun, Peng
    Chai, Yufeng
    Tong, Guohua
    Zhang, Jue
    Zhu, Weidong
    Fang, Jing
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2009, 37 (01) : 121 - 127
  • [30] Cellular membrane collapse by atmospheric-pressure plasma jet
    Kim, Kangil
    Ahn, Hak Jun
    Lee, Jae-Hyeok
    Kim, Jae-Ho
    Yang, Sang Sik
    Lee, Jong-Soo
    APPLIED PHYSICS LETTERS, 2014, 104 (01)