Multiple Solutions to a Transmission Problem with a Critical Hardy-Sobolev Exponential Source Term

被引:1
作者
Wang, Yue [1 ]
机构
[1] Guizhou Minzu Univ, Sch Data Sci & Informat Engn, Guiyang 550025, Peoples R China
关键词
Multiple solutions; Critical Hardy-Sobolev exponent; Variational method; The third solution; Mazur's Lemma; NONLOCAL PROBLEM; KIRCHHOFF-TYPE; EQUATIONS; EXISTENCE;
D O I
10.1007/s12346-024-00985-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper there are established many results for a transmission problem with critical Hardy-Sobolev exponential source term u3|x|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{u<^>3}{|x|}$$\end{document} in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>3$$\end{document}. We obtain that there are at least three weakly nontrivial solutions when a positive coefficient of nonhomogeneous term is enough small using the variational method. Next infinitely many classical solutions are obtained when the coefficient equals to zero. Moreover, a new compactness condition is derived with the help of Brezis-Lieb's lemma and Mazur's lemma.
引用
收藏
页数:24
相关论文
共 37 条
  • [1] REGULARITY AND MULTIPLICITY OF SOLUTIONS FOR A NONLOCAL PROBLEM WITH CRITICAL SOBOLEV-HARDY NONLINEARITIES
    Alotaibi, Sarah Rsheed Mohamed
    Saoudi, Kamel
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (03) : 747 - 775
  • [2] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [3] Badiale M, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-85729-227-8
  • [4] Bernstein SN., 1940, Izv. Ros. Akad. Nauk Ser. Mat, V4, P1
  • [5] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [6] The Multiplicity of Nontrivial Solutions for a New p(x)-Kirchhoff-Type Elliptic Problem
    Chu, Chang-Mu
    Xiao, Yu-Xia
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [7] Multiple solutions for a nonlocal problem
    Chu, Changmu
    Liu, Jiaquan
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 145
  • [8] Daoues A, 2023, ELECTRON J DIFFER EQ, V2023
  • [9] Existence and Multiplicity of Solutions for a Nonlocal Problem with Critical Sobolev-Hardy Nonlinearities
    Daoues, Adel
    Hammami, Amani
    Saoudi, Kamel
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (05)
  • [10] Diestel J., 1984, GRADUATE TEXTS MATH, V92, DOI DOI 10.1007/978-1-4612-5200-9