THE NILPOTENCY OF THE PRIME RADICAL OF A GOLDIE MODULE

被引:0
作者
Beachy, John A. [1 ]
Medina-Barcenas, Mauricio [2 ]
机构
[1] Northern Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA
[2] Benemerita Univ Autonoma Puebla, Fac Ciencias Matemat, Ave San Claudio & 18 Sur, Puebla 72570, Mexico
关键词
Goldie module; prime radical; nilpotent submodule; retractable module; ACC on annihilators; projective module;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
With the notion of prime submodule defined by F. Raggi et al. we prove that the intersection of all prime submodules of a Goldie module M is a nilpotent submodule provided that M is retractable and M-(Lambda)-projective for every index set Lambda. This extends the well known fact that in a left Goldie ring the prime radical is nilpotent.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 14 条
  • [1] A Characterization of the Pseudo-Browder Essential Spectra of Linear Operators and Application to a Transport Equation
    Abdmouleh, Faical
    Ammar, Aymen
    Jeribi, Aref
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2015, 44 (03) : 141 - 153
  • [2] On Drazin invertibility
    Aiena, Pietro
    Biondi, Maria T.
    Carpintero, Carlos
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (08) : 2839 - 2848
  • [3] Fredholm Spectra and Weyl Type Theorems for Drazin Invertible Operators
    Aiena, Pietro
    Triolo, Salvatore
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4385 - 4400
  • [4] The stability of pseudospectra and essential pseudospectra of linear relations
    Ammar, Aymen
    Daoud, Houcem
    Jeribi, Aref
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2016, 7 (04) : 473 - 491
  • [5] A note on the essential pseudospectra and application
    Ammar, Aymen
    Boukettaya, Bilel
    Jeribi, Aref
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (08) : 1474 - 1483
  • [6] ON WEIGHTED AND PSEUDO-WEIGHTED SPECTRA OF BOUNDED OPERATORS
    Athmouni, Nassim
    Baloudi, Hatem
    Jeribi, Aref
    Kacem, Ghazi
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (03): : 809 - 821
  • [7] WEYL SPECTRUM OF AN OPERATOR
    BERBERIAN, SK
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1970, 20 (06) : 529 - +
  • [8] Burlando L., 1999, Acta Sci. Math. (Szeged), V65, P217
  • [9] B-Browder spectra and localized SVEP
    Carpintero C.R.
    García O.
    Rosas E.R.
    Sanabria J.E.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2008, 57 (2) : 239 - 254
  • [10] COBURN LA, 1966, MICH MATH J, V13, P285