Prediction of futile recanalisation after endovascular treatment in acute ischaemic stroke: development and validation of a hybrid machine learning model

被引:1
作者
Nie, Ximing [1 ,2 ]
Yang, Jinxu [3 ]
Li, Xinxin [2 ]
Zhan, Tianming [2 ]
Liu, Dongdong [2 ]
Yan, Hongyi [2 ]
Wei, Yufei [1 ,2 ]
Liu, Xiran [1 ,2 ]
Chen, Jiaping [1 ,2 ]
Gong, Guoyang [2 ]
Wu, Zhenzhou [2 ]
Yang, Zhonghua [1 ,2 ]
Wen, Miao [1 ,2 ]
Gu, Weibin [4 ]
Pan, Yuesong [1 ,2 ]
Jiang, Yong [1 ,2 ]
Meng, Xia [1 ,2 ]
Liu, Tao [5 ,6 ]
Cheng, Jian [5 ,6 ]
Li, Zixiao [1 ,2 ]
Miao, Zhongrong [7 ]
Liu, Liping [1 ,2 ]
机构
[1] Capital Med Univ, Dept Neurol, Beijing, Peoples R China
[2] Beijing Tiantan Hosp, China Natl Clin Res Ctr Neurol Dis, Beijing, Peoples R China
[3] Univ Sci & Technol, Sch Comp & Commun Engn, Beijing, Peoples R China
[4] Beijing Tiantan Hosp, Dept Radiol, Beijing, Peoples R China
[5] Beihang Univ, Med Engn Int Res Inst Multidisciplinary Sci, Sch Biol Sci, Key Lab Biomech & Mechanobiol, Beijing, Peoples R China
[6] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Comp Sci & Engn, Beijing, Peoples R China
[7] Capital Med Univ, Beijing Tiantan Hosp, Dept Intervent Neuroradiol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Stroke; Risk Factors; Thrombectomy;
D O I
10.1136/svn-2023-002500
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background Identification of futile recanalisation following endovascular therapy (EVT) in patients with acute ischaemic stroke is both crucial and challenging. Here, we present a novel risk stratification system based on hybrid machine learning method for predicting futile recanalisation.Methods Hybrid machine learning models were developed to address six clinical scenarios within the EVT and perioperative management workflow. These models were trained on a prospective database using hybrid feature selection technique to predict futile recanalisation following EVT. The optimal model was validated and compared with existing models and scoring systems in a multicentre prospective cohort to develop a hybrid machine learning-based risk stratification system for futile recanalisation prediction.Results Using a hybrid feature selection approach, we trained and tested multiple classifiers on two independent patient cohorts (n=1122) to develop a hybrid machine learning-based prediction model. The model demonstrated superior discriminative ability compared with other models and scoring systems (area under the curve=0.80, 95% CI 0.73 to 0.87) and was transformed into a web application (RESCUE-FR Index) that provides a risk stratification system for individual prediction (accessible online at fr-index.biomind.cn/RESCUE-FR/).Conclusions The proposed hybrid machine learning approach could be used as an individualised risk prediction model to facilitate adherence to clinical practice guidelines and shared decision-making for optimal candidate selection and prognosis assessment in patients undergoing EVT.
引用
收藏
页码:631 / 639
页数:9
相关论文
共 13 条
  • [1] A hybrid machine learning approach to identify coronary diseases using feature selection mechanism on heart disease dataset
    Doppala, Bhanu Prakash
    Bhattacharyya, Debnath
    Chakkravarthy, Midhun
    Kim, Tai-hoon
    [J]. DISTRIBUTED AND PARALLEL DATABASES, 2023, 41 (1-2) : 1 - 20
  • [2] Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials
    Goyal, Mayank
    Menon, Bijoy K.
    van Zwam, Wim H.
    Dippel, Diederik W. J.
    Mitchell, Peter J.
    Demchuk, Andrew M.
    Davalos, Antoni
    Majoie, Charles B. L. M.
    van der Lugt, Aad
    de Miquel, Maria A.
    Donnan, Geoff Rey A.
    Roos, Yvo B. W. E. M.
    Bonafe, Alain
    Jahan, Reza
    Diener, Hans-Christoph
    van den Berg, Lucie A.
    Levy, Elad I.
    Berkhemer, Olvert A.
    Pereira, Vitor M.
    Rempel, Jeremy
    Millan, Monica
    Davis, Stephen M.
    Roy, Daniel
    Thornton, John
    San Roman, Luis
    Ribo, Marc
    Beumer, Debbie
    Stouch, Bruce
    Brown, Scott
    Campbell, Bruce C. V.
    van Oostenbrugge, Robert J.
    Saver, Jeff Rey L.
    Hill, Michael D.
    Jovin, Tudor G.
    [J]. LANCET, 2016, 387 (10029) : 1723 - 1731
  • [3] Multi-level aspect based sentiment classification of Twitter data: using hybrid approach in deep learning
    Janjua, Sadaf Hussain
    Siddiqui, Ghazanfar Farooq
    Sindhu, Muddassar Azam
    Rashid, Umer
    [J]. PEERJ COMPUTER SCIENCE, 2021, : 1 - 25
  • [4] Jovin TG, 2022, LANCET, V399, P249, DOI 10.1016/S0140-6736(21)01341-6
  • [5] Outcome Prediction Models for Endovascular Treatment of Ischemic Stroke: Systematic Review and External Validation
    Kremers, Femke
    Venema, Esmee
    Duvekot, Martijne
    Yo, Lonneke
    Bokkers, Reinoud
    Nijeholt, Geert Lycklama A.
    van Es, Adriaan
    van der Lugt, Aad
    Majoie, Charles
    Burke, James
    Roozenbeek, Bob
    Lingsma, Hester
    Dippel, Diederik
    [J]. STROKE, 2022, 53 (03) : 825 - 836
  • [6] A hybrid machine learning approach to localizing the origin of ventricular tachycardia using 12-lead electrocardiograms
    Missel, Ryan
    Gyawali, Prashnna K.
    Murkute, Jaideep Vitthal
    Li, Zhiyuan
    Zhou, Shijie
    AbdelWahab, Amir
    Davis, Jason
    Warren, James
    Sapp, John L.
    Wang, Linwei
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 126 (126)
  • [7] Futile Recanalization after Endovascular Therapy in Acute Ischemic Stroke
    Nie, Ximing
    Pu, Yuehua
    Zhang, Zhe
    Liu, Xin
    Duan, Wanying
    Liu, Liping
    [J]. BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [8] Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association
    Powers, William J.
    Rabinstein, Alejandro A.
    Ackerson, Teri
    Adeoye, Opeolu M.
    Bambakidis, Nicholas C.
    Becker, Kyra
    Biller, Jose
    Brown, Michael
    Demaerschalk, Bart M.
    Hoh, Brian
    Jauch, Edward C.
    Kidwell, Chelsea S.
    Leslie-Mazwi, Thabele M.
    Ovbiagele, Bruce
    Scott, Phillip A.
    Sheth, Kevin N.
    Southerland, Andrew M.
    Summers, Deborah, V
    Tirschwell, David L.
    [J]. STROKE, 2019, 50 (12) : E344 - E418
  • [9] European Stroke Organisation (ESO)-European Society for Minimally Invasive Neurological Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischemic Stroke
    Turc, Guillaume
    Bhogal, Pervinder
    Fischer, Urs
    Khatri, Pooja
    Lobotesis, Kyriakos
    Mazighi, Mikael
    Schellinger, Peter D.
    Toni, Danilo
    de Vries, Joost
    White, Philip
    Fiehler, Jens
    [J]. JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2023, 15 (08)
  • [10] Selection of patients for intra-arterial treatment for acute ischaemic stroke: development and validation of a clinical decision tool in two randomised trials
    Venema, Esmee
    Mulder, Maxim J. H. L.
    Roozenbeek, Bob
    Broderick, Joseph P.
    Yeatts, Sharon D.
    Khatri, Pooja
    Berkhemer, Olvert A.
    Emmer, Bart J.
    Roos, Yvo B. W. E. M.
    Majoie, Charles B. L. M.
    van Oostenbrugge, Robert J.
    van Zwam, Wim H.
    van der Lugt, Aad
    Steyerberg, Ewout W.
    Dippel, Diederik W. J.
    Lingsma, Hester F.
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2017, 357