An artificial intelligence based abdominal aortic aneurysm prognosis classifier to predict patient outcomes

被引:4
|
作者
Chung, Timothy K. [1 ]
Gueldner, Pete H. [1 ]
Aloziem, Okechukwu U. [2 ]
Liang, Nathan L. [1 ,3 ,4 ]
Vorp, David A. [1 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ]
机构
[1] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Sch Med, Med Ctr, Pittsburgh, PA USA
[3] Univ Pittsburgh, Med Ctr, Dept Surg, Div Vasc Surg, Pittsburgh, PA USA
[4] Univ Pittsburgh, Dept Surg, Pittsburgh, PA 15260 USA
[5] Univ Pittsburgh, McGowan Inst Regenerat Med, Pittsburgh, PA 15260 USA
[6] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15260 USA
[7] Univ Pittsburgh, Dept Cardiothorac Surg, Pittsburgh, PA 15260 USA
[8] Univ Pittsburgh, Clin & Translat Sci Inst, Pittsburgh, PA 15260 USA
[9] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA
[10] Univ Pittsburgh, Ctr Vasc Remodeling & Regenerat, Pittsburgh, PA 15260 USA
[11] Univ Pittsburgh, Bioengn Cardiothorac Surg Surg Chem & Petr Engn &, Ctr Bioengn, 300 Technol Dr,Suite 300, Pittsburgh, PA 15219 USA
关键词
MECHANICAL WALL STRESS; INTRALUMINAL THROMBUS; MODELS; BIOMECHANICS; BEHAVIOR; RISK;
D O I
10.1038/s41598-024-53459-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Abdominal aortic aneurysms (AAA) have been rigorously investigated to understand when their clinically-estimated risk of rupture-an event that is the 13th leading cause of death in the US-exceeds the risk associated with repair. Yet the current clinical guideline remains a one-size-fits-all "maximum diameter criterion" whereby AAA exceeding a threshold diameter is thought to make the risk of rupture high enough to warrant intervention. However, between 7 and 23.4% of smaller-sized AAA have been reported to rupture with diameters below the threshold. In this study, we train and assess machine learning models using clinical, biomechanical, and morphological indices from 381 patients to develop an aneurysm prognosis classifier to predict one of three outcomes for a given AAA patient: their AAA will remain stable, their AAA will require repair based as currently indicated from the maximum diameter criterion, or their AAA will rupture. This study represents the largest cohort of AAA patients that utilizes the first available medical image and clinical data to classify patient outcomes. The APC model therefore represents a potential clinical tool to striate specific patient outcomes using machine learning models and patient-specific image-based (biomechanical and morphological) and clinical data as input. Such a tool could greatly assist clinicians in their management decisions for patients with AAA.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Artificial intelligence framework to predict wall stress in abdominal aortic aneurysm
    Chung, Timothy K.
    Liang, Nathan L.
    Vorp, David A.
    APPLICATIONS IN ENGINEERING SCIENCE, 2022, 10
  • [2] Artificial intelligence in abdominal aortic aneurysm
    Raffort, Juliette
    Adam, Cedric
    Carrier, Marion
    Ballaith, Ali
    Coscas, Raphael
    Jean-Baptiste, Elixene
    Hassen-Khodja, Reda
    Chakfe, Nabil
    Lareyre, Fabien
    JOURNAL OF VASCULAR SURGERY, 2020, 72 (01) : 321 - +
  • [3] Computed Wall Stress May Predict the Growth of Abdominal Aortic Aneurysm
    Li, Zhi-Yong
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 2626 - 2629
  • [4] Machine learning to predict outcomes following endovascular abdominal aortic aneurysm repair
    Li, Ben
    Aljabri, Badr
    Verma, Raj
    Beaton, Derek
    Eisenberg, Naomi
    Lee, Douglas S.
    Wijeysundera, Duminda N.
    Forbes, Thomas L.
    Rotstein, Ori D.
    de Mestral, Charles
    Mamdani, Muhammad
    Roche-Nagle, Graham
    Al-Omran, Mohammed
    BRITISH JOURNAL OF SURGERY, 2023, 110 (12) : 1840 - 1849
  • [5] Use of artificial intelligence to predict outcomes in mild aortic valve stenosis
    Julakanti, Raghav R.
    Padang, Ratnasari
    Scott, Christopher G.
    Dahl, Jordi
    Al-Shakarchi, Nader J.
    Metzger, Coby
    Lanyado, Alon
    Jackson, John, I
    Nkomo, Vuyisile T.
    Pellikka, Patricia A.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 6 (01): : 63 - 72
  • [6] Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography
    Spinella, Giovanni
    Fantazzini, Alice
    Finotello, Alice
    Vincenzi, Elena
    Boschetti, Gian Antonio
    Brutti, Francesca
    Magliocco, Marco
    Pane, Bianca
    Basso, Curzio
    Conti, Michele
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (05) : 2125 - 2137
  • [7] Using machine learning to predict outcomes following open abdominal aortic aneurysm repair
    Li, Ben
    Aljabri, Badr
    Verma, Raj
    Beaton, Derek
    Eisenberg, Naomi
    Lee, Douglas S.
    Wijeysundera, Duminda N.
    Forbes, Thomas L.
    Rotstein, Ori D.
    de Mestral, Charles
    Mamdani, Muhammad
    Roche-Nagle, Graham
    Al-Omran, Mohammed
    JOURNAL OF VASCULAR SURGERY, 2023, 78 (06) : 1426 - 1438.e6
  • [8] Outcomes of symptomatic abdominal aortic aneurysm repair
    De Martino, Randall R.
    Nolan, Brian W.
    Goodney, Philip P.
    Chang, Catherine K.
    Schanzer, Andres
    Cambria, Robert
    Bertges, Daniel J.
    Cronenwett, Jack L.
    JOURNAL OF VASCULAR SURGERY, 2010, 52 (01) : 5 - 12
  • [9] CT analysis of aortic calcifications to predict abdominal aortic aneurysm rupture
    Mansouri, Mohamed
    Therasse, Eric
    Montagnon, Emmanuel
    Zhan, Ying Olivier
    Lessard, Simon
    Roy, Aubert
    Boucher, Louis-Martin
    Steinmetz, Oren
    Aslan, Emre
    Tang, An
    Chartrand-Lefebvre, Carl
    Soulez, Gilles
    EUROPEAN RADIOLOGY, 2024, 34 (06) : 3903 - 3911
  • [10] Artificial intelligence-driven multiomics predictive model for abdominal aortic aneurysm subtypes to identify heterogeneous immune cell infiltration and predict disease progression
    Zhang, Lin
    Yang, Han
    Zhou, Chenxing
    Li, Yao
    Long, Zhen
    Li, Que
    Zhang, Jiangfeng
    Qin, Xiao
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2024, 138