Sturmian comparison theorem for hyperbolic equations on a rectangular prism

被引:1
作者
Ozbekler, Abdullah [1 ]
Isler, Kuebra Uslu [2 ]
Alzabut, Jehad [1 ,2 ,3 ]
机构
[1] OSTIM Tech Univ, Dept Ind Engn, Ankara, Turkiye
[2] Bolu Abant Izzet Baysal Univ, Dept Math, Bolu, Turkiye
[3] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 02期
关键词
hyperbolic equation; Sturm comparison; rectangular prism; oscillation; eigenvalue problem; hyperrectangle; PARTIAL-DIFFERENTIAL-EQUATIONS; PICONE-TYPE IDENTITY;
D O I
10.3934/math.2024232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, new Sturmian comparison results were obtained for linear and nonlinear hyperbolic equations on a rectangular prism. The results obtained for linear equations extended those given by Kreith [Sturmian theorems on hyperbolic equations, Proc. Amer. Math. Soc., 22 (1969), 277-281] in which the Sturmian comparison theorem for linear equations was obtained on a rectangular region in the plane. For the purpose of verification, an application was described using an eigenvalue problem.
引用
收藏
页码:4805 / 4815
页数:11
相关论文
共 16 条
[1]   New approach on conventional solutions to nonlinear partial differential equations describing physical phenomena [J].
Ahmad, Hijaz ;
Khan, Tufail A. ;
Stanimirovic, Predrag S. ;
Shatanawi, Wasfi ;
Botmart, Thongchai .
RESULTS IN PHYSICS, 2022, 41
[2]  
Diaz J. B., 1969, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez., V9, P135
[3]   STURM COMPARISON THEOREMS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS [J].
DIAZ, JB ;
MCLAUGHL.JR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (02) :335-&
[4]  
Hartman P., 1955, P AM MATH SOC, V6, P862
[5]  
KREITH K, 1969, P AM MATH SOC, V22, P277
[6]  
Kreith K., 1964, Proc. Amer. Math. Soc., V15, P341
[7]  
Kreith K., 1973, Oscillation Theory, DOI [10.1007/BFb0067537, DOI 10.1007/BFB0067537]
[8]   A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order [J].
Kusano, T ;
Jaros, J ;
Yoshida, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 40 (1-8) :381-395
[9]   Amended oscillation criteria for second-order neutral differential equations with damping term [J].
Moaaz, Osama ;
Chatzarakis, George E. ;
Abdeljawad, Thabet ;
Cesarano, Clemente ;
Nabih, Amany .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[10]   Oscillation results for a fractional partial differential system with damping and forcing terms [J].
Palanisamy, A. ;
Alzabut, J. ;
Muthulakshmi, V ;
Santra, S. S. ;
Nonlaopon, K. .
AIMS MATHEMATICS, 2023, 8 (02) :4261-4279