Solutions and continuum limits to nonlocal discrete modified Korteweg-de Vries equations

被引:1
作者
Zhao, Song-lin [1 ]
Xiang, Xiao-bo [1 ]
Shen, Shou-feng [1 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
bilinearization reduction approach; continuum limits; dynamics; nonlocal discrete mKdV equations; solutions; ION-ACOUSTIC SOLITON; INVERSE SCATTERING; SCHRODINGER SYSTEMS; INTEGRABILITY; DEVRIES;
D O I
10.1002/mma.9895
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we take advantage of the bilinearization reduction method to consider the local and nonlocal reduction of a discrete Ablowitz-Kaup-Newell-Segur equation. Exact solutions in double Casoratian form to the reduced nonlocal discrete modified Korteweg-de Vries equations are constructed. The dynamics of soliton solutions are analyzed and illustrated by asymptotic analysis. Moreover, both semi-continuous limit and full continuous limit are applied to obtain the local and nonlocal semi-discrete modified Korteweg-de Vries equations, as well as the local and nonlocal continuous modified Korteweg-de Vries equations.
引用
收藏
页码:5879 / 5893
页数:15
相关论文
共 53 条
  • [1] Discrete nonlocal nonlinear Schrodinger systems: Integrability, inverse scattering and solitons
    Ablowitz, Mark J.
    Luo, Xu-Dan
    Musslimani, Ziad H.
    [J]. NONLINEARITY, 2020, 33 (07) : 3653 - 3707
  • [2] Integrable Nonlocal Nonlinear Equations
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) : 7 - 59
  • [3] Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. NONLINEARITY, 2016, 29 (03) : 915 - 946
  • [4] Integrable discrete PT symmetric model
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. PHYSICAL REVIEW E, 2014, 90 (03):
  • [5] Integrable Nonlocal Nonlinear Schrodinger Equation
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [6] SOLITONS AND RATIONAL SOLUTIONS OF NON-LINEAR EVOLUTION EQUATIONS
    ABLOWITZ, MJ
    SATSUMA, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) : 2180 - 2186
  • [7] NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE
    ABLOWITZ, MJ
    KAUP, DJ
    NEWELL, AC
    SEGUR, H
    [J]. PHYSICAL REVIEW LETTERS, 1973, 31 (02) : 125 - 127
  • [8] Interaction properties of complex modified Korteweg-de Vries (mKdV) solitons
    Anco, Stephen C.
    Ngatat, Nestor Tchegoum
    Willoughby, Mark
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (17) : 1378 - 1394
  • [9] Bhatia R, 1997, B LOND MATH SOC, V29, P1
  • [10] Solutions of Nonlocal Equations Reduced from the AKNS Hierarchy
    Chen, Kui
    Deng, Xiao
    Lou, Senyue
    Zhang, Da-jun
    [J]. STUDIES IN APPLIED MATHEMATICS, 2018, 141 (01) : 113 - 141