Development and validation of a combined nomogram for predicting perineural invasion status in rectal cancer via computed tomography-based radiomics

被引:12
作者
Liu, Jiaxuan [1 ]
Sun, Lingling [1 ]
Zhao, Xiang [2 ]
Lu, Xi [1 ]
机构
[1] China Med Univ, Dept Radiol, Affiliated Hosp 4, East Chongshan Rd, Shenyang 110000, Liaoning, Peoples R China
[2] Shenyang Univ, Inst Innovat Sci & Technol, Shenyang, Liaoning, Peoples R China
关键词
CT; nomogram; perineural invasion; radiomics; rectal cancer; LYMPH-NODE METASTASIS; COLORECTAL-CANCER; PROGNOSTIC-FACTOR; FEATURES; SIGNATURE; IMAGES; MODEL; COLON; STAGE; 2D;
D O I
10.4103/jcrt.jcrt_2633_22
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Aim:This study aimed to create and validate a clinic-radiomics nomogram based on computed tomography (CT) imaging for predicting preoperative perineural invasion (PNI) of rectal cancer (RC).Material and Methods:This study enrolled 303 patients with RC who were divided into training (n = 242) and test datasets (n = 61) in an 8:2 ratio with all their clinical outcomes. A total of 3,296 radiomic features were extracted from CT images. Five machine learning (ML) models (logistic regression (LR)/K-nearest neighbor (KNN)/multilayer perceptron (MLP)/support vector machine (SVM)/light gradient boosting machine (LightGBM)) were developed using radiomic features derived from the arterial and venous phase images, and the model with the best diagnostic performance was selected. By combining the radiomics and clinical signatures, a fused nomogram model was constructed.Results:After using the Mann-Whitney U-test and least absolute shrinkage and selection operator (LASSO) to remove redundant features, the MLP model proved to be the most efficient among the five ML models. The fusion nomogram based on MLP prediction probability further improves the ability to predict the PNI status. The area under the curve (AUC) of the training and test sets was 0.883 and 0.889, respectively, which were higher than those of the clinical (training set, AUC = 0.710; test set, AUC = 0.762) and radiomic models (training set, AUC = 0.840; test set, AUC = 0.834).Conclusions:The clinical-radiomics combined nomogram model based on enhanced CT images efficiently predicted the PNI status of patients with RC.
引用
收藏
页码:1552 / 1559
页数:8
相关论文
共 42 条
[1]   Lymphovascular and perineural invasion are associated with poor prognostic features and outcomes in colorectal cancer: A retrospective cohort study [J].
Al-Sukhni, Eisar ;
Attwood, Kristopher ;
Gabriel, Emmanuel M. ;
LeVea, Charles M. ;
Kanehira, Kazunori ;
Nurkin, Steven J. .
INTERNATIONAL JOURNAL OF SURGERY, 2017, 37 :42-49
[2]  
Benson AB., 2021, J. Natl. Compr. Cancer Netw. JNCCN, V19, P329, DOI DOI 10.6004/JNCCN.2021.0012
[3]   Rectal Cancer, Version 6.2020 Featured Updates to the NCCN Guidelines [J].
Benson, Al B., III ;
Venook, Alan P. ;
Al-Hawary, Mahmoud M. ;
Arain, Mustafa A. ;
Chen, Yi-Jen ;
Ciombor, Kristen K. ;
Cohen, Stacey ;
Cooper, Harry S. ;
Deming, Dustin ;
Garrido-Laguna, Ignacio ;
Grem, Jean L. ;
Gunn, Andrew ;
Hoffe, Sarah ;
Hubbard, Joleen ;
Hunt, Steven ;
Kirilcuk, Natalie ;
Krishnamurthi, Smitha ;
Messersmith, Wells A. ;
Meyerhardt, Jeffrey ;
Miller, Eric D. ;
Mulcahy, Mary F. ;
Nurkin, Steven ;
Overman, Michael J. ;
Parikh, Aparna ;
Patel, Hitendra ;
Pedersen, Katrina ;
Saltz, Leonard ;
Schneider, Charles ;
Shibata, David ;
Skibber, John M. ;
Sofocleous, Constantinos T. ;
Stoffel, Elena M. ;
Stotsky-Himelfarb, Eden ;
Willett, Christopher G. ;
Johnson-Chilla, Alyse ;
Gurski, Lisa A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2020, 18 (07) :807-815
[4]   Perineural Invasion Predicts for Distant Metastasis in Locally Advanced Rectal Cancer Treated With Neoadjuvant Chemoradiation and Surgery [J].
Chablani, Priyanka ;
Nguyen, Phuong ;
Pan, Xueliang ;
Robinson, Andrew ;
Walston, Steve ;
Wu, Christina ;
Frankel, Wendy L. ;
Chen, Wei ;
Bekaii-Saab, Tanios ;
Chakravarti, Arnab ;
Wuthrick, Evan ;
Williams, Terence M. .
AMERICAN JOURNAL OF CLINICAL ONCOLOGY-CANCER CLINICAL TRIALS, 2017, 40 (06) :561-568
[5]   Multiparametric radiomics improve prediction of lymph node metastasis of rectal cancer compared with conventional radiomics [J].
Chen, Li-Da ;
Liang, Jin-Yu ;
Wu, Hui ;
Wang, Zhu ;
Li, Shu-Rong ;
Li, Wei ;
Zhang, Xin-Hua ;
Chen, Jian-Hui ;
Ye, Jin-Ning ;
Li, Xin ;
Xie, Xiao-Yan ;
Lu, Ming-De ;
Kuang, Ming ;
Xu, Jian-Bo ;
Wang, Wei .
LIFE SCIENCES, 2018, 208 :55-63
[6]   Computed tomography-based radiomics nomogram for the preoperative prediction of perineural invasion in colorectal cancer: a multicentre study [J].
Chen, Qiaoling ;
Cui, Yanfen ;
Xue, Ting ;
Peng, Hui ;
Li, Manman ;
Zhu, Xinghua ;
Duan, Shaofeng ;
Gu, Hongmei ;
Feng, Feng .
ABDOMINAL RADIOLOGY, 2022, 47 (09) :3251-3263
[7]   Clinico-Radiologic Nomogram Using Multiphase CT to Predict Lymph Node Metastasis in Colon Cancer [J].
Cheng, Yuan ;
Yu, Qing ;
Meng, Weiyu ;
Jiang, Wenyan .
MOLECULAR IMAGING AND BIOLOGY, 2022, 24 (05) :798-806
[8]   Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study [J].
Dong, D. ;
Fang, M. -J. ;
Tang, L. ;
Shan, X. -H. ;
Gao, J. -B. ;
Giganti, F. ;
Wang, R. -P. ;
Chen, X. ;
Wang, X. -X. ;
Palumbo, D. ;
Fu, J. ;
Li, W. -C. ;
Li, J. ;
Zhong, L. -Z. ;
De Cobelli, F. ;
Ji, J. -F. ;
Liu, Z. -Y. ;
Tian, J. .
ANNALS OF ONCOLOGY, 2020, 31 (07) :912-920
[9]   Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods [J].
Ferlay, J. ;
Colombet, M. ;
Soerjomataram, I. ;
Mathers, C. ;
Parkin, D. M. ;
Pineros, M. ;
Znaor, A. ;
Bray, F. .
INTERNATIONAL JOURNAL OF CANCER, 2019, 144 (08) :1941-1953
[10]   Intra-tumoral budding in preoperative biopsy specimens predicts lymph node and distant metastasis in patients with colorectal cancer [J].
Giger, Olivier T. ;
Comtesse, Sarah C. M. ;
Lugli, Alessandro ;
Zlobec, Inti ;
Kurrer, Michael O. .
MODERN PATHOLOGY, 2012, 25 (07) :1048-1053