Investigation of radiomics models for predicting biochemical recurrence of advanced prostate cancer on pretreatment MR ADC maps based on automatic image segmentation

被引:2
作者
Wang, Huihui [1 ]
Wang, Kexin [2 ]
Ma, Shuai [1 ]
Gao, Ge [1 ]
Wang, Xiaoying [1 ,3 ]
机构
[1] Peking Univ First Hosp, Dept Radiol, Beijing, Peoples R China
[2] Capital Med Univ, Sch Basic Med Sci, Beijing, Peoples R China
[3] Peking Univ First Hosp, Dept Radiol, 8 Xishiku St, Beijing 100034, Peoples R China
来源
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS | 2024年 / 25卷 / 04期
关键词
apparent diffusion coefficient; biochemical recurrence; prostate cancer; radiomics;
D O I
10.1002/acm2.14244
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: To develop radiomics models based on automatic segmentation of the pretreatment apparent diffusion coefficient (ADC) maps for predicting the biochemical recurrence (BCR) of advanced prostate cancer (PCa).Methods: A total of 100 cases with pathologically confirmed PCa were retrospectively included in this study. These cases were randomly divided into training (n = 70) and test (n = 30) datasets. Two predictive models were constructed based on the combination of age, prostate specific antigen (PSA) level, Gleason score, and clinical staging before therapy and the prostate area (Model_1) or PCa area (Model_2). Another two predictive models were constructed based on only prostate area (Model_3) or PCa area (Model_4). The area under the receiver operating characteristic curve (ROC AUC) and precision-recall (PR) curve analysis were used to analyze the models' performance.Results: Sixty-five patients without BCR (BCR-) and 35 patients with BCR (BCR+) were confirmed. The age, PSA, volume, diameter and ADC value of the prostate and PCa were not significantly different between the BCR- and BCR+ groups or between the training and test datasets (all p > 0.05). The AUCs were 0.637 (95% CI: 0.434-0.838), 0.841 (95% CI: 0.695-0.940), 0.840 (95% CI: 0.698-0.983), and 0.808 (95% CI: 0.627-0.988) for Model_1 to Model_4 in the test dataset without significant difference. The 95% bootstrap confidence intervals for the areas under the PR curve of the four models were not statistically different.Conclusion: The radiomics models based on automatically segmented prostate and PCa areas on the pretreatment ADC maps developed in our study can be promising in predicting BCR of advanced PCa.
引用
收藏
页数:10
相关论文
共 28 条
  • [1] [Anonymous], NCCN CLIN PRACTICE G
  • [2] Quality Assurance Multicenter Comparison of Different MR Scanners for Quantitative Diffusion-Weighted Imaging
    Belli, Giacomo
    Busoni, Simone
    Ciccarone, Antonio
    Coniglio, Angela
    Esposito, Marco
    Giannelli, Marco
    Mazzoni, Lorenzo N.
    Nocetti, Luca
    Sghedoni, Roberto
    Tarducci, Roberto
    Zatelli, Giovanna
    Anoja, Rosa A.
    Belmonte, Gina
    Bertolino, Nicola
    Betti, Margherita
    Biagini, Cristiano
    Ciarmatori, Alberto
    Cretti, Fabiola
    Fabbri, Emma
    Fedeli, Luca
    Filice, Silvano
    Fulcheri, Christian P. L.
    Gasperi, Chiara
    Mangili, Paola A.
    Mazzocchi, Silvia
    Meliado, Gabriele
    Morzenti, Sabrina
    Noferini, Linhsia
    Oberhofer, Nadia
    Orsingher, Laura
    Paruccini, Nicoletta
    Princigalli, Goffredo
    Quattrocchi, Mariagrazia
    Rinaldi, Adele
    Scelfo, Danilo
    Freixas, Gloria Vilches
    Tenori, Leonardo
    Zucca, Ileana
    Luchinat, Claudio
    Gori, Cesare
    Gobbi, Gianni
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 43 (01) : 213 - 219
  • [3] External Validation of an MRI-Derived Radiomics Model to Predict Biochemical Recurrence after Surgery for High-Risk Prostate Cancer
    Bourbonne, Vincent
    Fournier, Georges
    Vallieres, Martin
    Lucia, Francois
    Doucet, Laurent
    Tissot, Valentin
    Cuvelier, Gilles
    Hue, Stephane
    Du, Henri Le Penn
    Perdriel, Luc
    Bertrand, Nicolas
    Staroz, Frederic
    Visvikis, Dimitris
    Pradier, Olivier
    Hatt, Mathieu
    Schick, Ulrike
    [J]. CANCERS, 2020, 12 (04)
  • [4] Dal Col LSB, 2022, INT BRAZ J UROL, V48, P175, DOI [10.1590/S1677-5538.IBJU.2021.0258, 10.1590/s1677-5538.ibju.2021.0258]
  • [5] Radiomics and Prostate MRI: Current Role and Future Applications
    Cutaia, Giuseppe
    La Tona, Giuseppe
    Comelli, Albert
    Vernuccio, Federica
    Agnello, Francesco
    Gagliardo, Cesare
    Salvaggio, Leonardo
    Quartuccio, Natale
    Sturiale, Letterio
    Stefano, Alessandro
    Calamia, Mauro
    Arnone, Gaspare
    Midiri, Massimo
    Salvaggio, Giuseppe
    [J]. JOURNAL OF IMAGING, 2021, 7 (02)
  • [6] Combination therapy in metastatic hormone-sensitive prostate cancer: is three a crowd?
    Davis, Ian D.
    [J]. THERAPEUTIC ADVANCES IN MEDICAL ONCOLOGY, 2022, 14
  • [7] A Clinical-Radiomics Model for Predicting Axillary Pathologic Complete Response in Breast Cancer With Axillary Lymph Node Metastases
    Gan, Liangyu
    Ma, Mingming
    Liu, Yinhua
    Liu, Qian
    Xin, Ling
    Cheng, Yuanjia
    Xu, Ling
    Qin, Naishan
    Jiang, Yuan
    Zhang, Xiaodong
    Wang, Xiaoying
    Ye, Jingming
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [8] MRI-based radiomics signature for localized prostate cancer: a new clinical tool for cancer aggressiveness prediction? Sub-study of prospective phase II trial on ultra-hypofractionated radiotherapy (AIRC IG-13218)
    Gugliandolo, Simone Giovanni
    Pepa, Matteo
    Isaksson, Lars Johannes
    Marvaso, Giulia
    Raimondi, Sara
    Botta, Francesca
    Gandini, Sara
    Ciardo, Delia
    Volpe, Stefania
    Riva, Giulia
    Rojas, Damari Patricia
    Zerini, Dario
    Pricolo, Paola
    Alessi, Sarah
    Petralia, Giuseppe
    Summers, Paul Eugene
    Mistretta, Frnacesco Alessandro
    Luzzago, Stefano
    Cattani, Federica
    De Cobelli, Ottavio
    Cassano, Enrico
    Cremonesi, Marta
    Bellomi, Massimo
    Orecchia, Roberto
    Jereczek-Fossa, Barbara Alicja
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (02) : 716 - 728
  • [9] Radiomics Models Based on Apparent Diffusion Coefficient Maps for the Prediction of High-Grade Prostate Cancer at Radical Prostatectomy: Comparison With Preoperative Biopsy
    Han, Chao
    Ma, Shuai
    Liu, Xiang
    Liu, Yi
    Li, Changxin
    Zhang, Yaofeng
    Zhang, Xiaodong
    Wang, Xiaoying
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (06) : 1892 - 1901
  • [10] Chemical or Surgical Castration-Is This Still an Important Question?
    Kolinsky, Michael
    Rescigno, Pasquale
    de Bono, Johann S.
    [J]. JAMA ONCOLOGY, 2016, 2 (04) : 437 - 438