Oxygen vacancies enriched Ni-Co/SiO2@CeO2 redox catalyst for cycling methane partial oxidation and CO2 splitting

被引:8
作者
Yang, Chang [1 ]
Zhang, Juping [1 ]
Wang, Jiakai [1 ]
Li, Dongfang [1 ]
Li, Kongzhai [1 ]
Zhu, Xing [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Key Lab Complex Nonferrous Met Resources Clean Uti, Kunming 650093, Peoples R China
来源
CHINESE JOURNAL OF CHEMICAL ENGINEERING | 2023年 / 63卷
基金
中国国家自然科学基金;
关键词
Chemical looping; Methane; Dry reforming; Catalyst; Partial Oxidation; NI; CARRIERS; OXIDE; NANOPARTICLES; COMBUSTION; SIO2;
D O I
10.1016/j.cjche.2023.04.025
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Redox catalysts play a vital role in the interconversion of two significant greenhouse gases, CO2 and CH4, via chemical looping methane dry reforming technology. Herein, a series of transition metals-alloyed and core-shell structured Ni-M/SiO2@CeO2 (M = Fe, Co, Cu, Mn, Zr) redox catalyst were fabricated and evaluated in a gas-solid fixed-bed reactor for cycling CH4 partial oxidation (POx) and CO2 splitting. The catalysts are composed of spherical SiO2 core and CeO2 shell, and the highly dispersed Ni alloy nanoparticles are the interlayer between core and shell. The oxygen vacancy concentration of Ni-M/SiO2@CeO2 followed the order of Co > Cu > Fe > Mn > Zr, and Ni alloying with transition metals significantly enhanced oxygen storage capacity (OSC). Ni-Co/SiO2@CeO2 catalyst with abundant oxygen vacancies and a high OSC showed the lowest temperatures of CH4 activation (610 degrees C) and CO2 decomposition (590 degrees C), thus demonstrating excellent redox reactivity. The catalyst exhibited superior activity and structural stability in the continuous CH4/CO2 redox cycles at 615 degrees C, achieving 87% CH4 conversion and 83% CO selectivity. The proposed catalyst shows great potential for the utilization of CH4 and CO2 in a redox mode, providing a new sight for design redox catalyst in chemical looping or related fields.(c) 2023 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.
引用
收藏
页码:235 / 245
页数:11
相关论文
共 54 条
[1]   3D-printing of metallic honeycomb monoliths as a doorway to a new generation of catalytic devices: the Ni-based catalysts in methane dry reforming showcase [J].
Agueniou, Fazia ;
Vidal, Hilario ;
de Dios Lopez, Juan ;
Hernandez-Garrido, Juan C. ;
Cauqui, Miguel A. ;
Botana, Francisco J. ;
Calvino, Jose J. ;
Galvita, Vladimir V. ;
Gatica, Jose M. .
CATALYSIS COMMUNICATIONS, 2021, 148
[2]   In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH4/CO2 reaction [J].
AlSabban, Bedour ;
Falivene, Laura ;
Kozlov, Sergey M. ;
Aguilar-Tapia, Antonio ;
Ould-Chikh, Samy ;
Hazemann, Jean-Louis ;
Cavallo, Luigi ;
Basset, Jean-Marie ;
Takanabe, Kazuhiro .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 213 :177-189
[3]   Production of hydrogen by chemical looping reforming of methane and biogas using a reactive and durable Cu-based oxygen carrier [J].
Cabello, A. ;
Mendiara, T. ;
Abad, A. ;
Izquierdo, M. T. ;
Garcia-Labiano, F. .
FUEL, 2022, 322
[4]   Moderate -temperature chemical looping splitting of CO 2 and H 2 O for syngas generation [J].
Cao, Zeshui ;
Zhu, Xing ;
Li, Kongzhai ;
Wei, Yonggang ;
He, Fang ;
Wang, Hua .
CHEMICAL ENGINEERING JOURNAL, 2020, 397
[5]   Efficient syngas production via CO2 reforming and electroreduction reactions through catalyst design [J].
Chen, Yingying ;
Li, Min ;
Li, Ziwei ;
Liu, Fei ;
Song, Guoqiang ;
Kawi, Sibudjing .
ENERGY CONVERSION AND MANAGEMENT, 2022, 265
[6]   Effect of calcination temperature on the performance of hexaaluminate supported CeO2 for chemical looping dry reforming [J].
Cheng, Zheng ;
Zhang, Li ;
Jin, Nannan ;
Zhu, Yanyan ;
Chen, Lihua ;
Yang, Qian ;
Yan, Ming ;
Ma, Xiaoxun ;
Wang, Xiaodong .
FUEL PROCESSING TECHNOLOGY, 2021, 218
[7]   Looking inside a Ni-Fe/MgAl2O4 catalyst for methane dry reforming via Mossbauer spectroscopy and in situ QXAS [J].
De Coster, Valentijn ;
Srinath, Nadadur Veeraraghavan ;
Theofanidis, Stavros Alexandros ;
Pirro, Laura ;
Van Alboom, Antoine ;
Poelman, Hilde ;
Sabbe, Maarten K. ;
Marin, Guy B. ;
Galvita, Vladimir V. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 300
[8]   Production of high purity H2 through chemical-looping water-gas shift at reforming temperatures - The importance of non-stoichiometric oxygen carriers [J].
de Leeuwe, Christopher ;
Hu, Wenting ;
Evans, John ;
von Stosch, Moritz ;
Metcalfe, Ian S. .
CHEMICAL ENGINEERING JOURNAL, 2021, 423
[9]   Syngas production from chemical-looping steam methane reforming: The effect of channel geometry on BaCoO3/CeO2 monolithic oxygen carriers [J].
Ding, Haoran ;
Tong, Sirui ;
Qi, Zhifu ;
Liu, Fei ;
Sun, Shien ;
Han, Long .
ENERGY, 2023, 263
[10]   Characterization, kinetics and stability studies of NiO and CuO supported by Al2O3, ZrO2, CeO2 and their combinations in chemical combustion [J].
Elgarni, Moheddin Mohamed ;
Tijani, Mansour Mohammedramadan ;
Mahinpey, Nader .
CATALYSIS TODAY, 2022, 397 :205-219