DO-SA&R: Distant Object Augmented Set Abstraction and Regression for Point-Based 3D Object Detection

被引:1
作者
He, Xuan [1 ]
Wang, Zian [1 ]
Lin, Jiacheng [1 ]
Nai, Ke [2 ]
Yuan, Jin [1 ]
Li, Zhiyong [1 ,3 ,4 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China
[3] Hunan Univ, Natl Engn Res Ctr Robot Visual Percept & Control T, Changsha 410082, Peoples R China
[4] Hunan Univ, Sch Robot, Changsha 410012, Peoples R China
基金
中国国家自然科学基金;
关键词
Three-dimensional displays; Feature extraction; Point cloud compression; Object detection; Training; Detectors; Autonomous vehicles; Point-based 3D object detection; scene understanding; autonomous driving;
D O I
10.1109/TIP.2023.3326394
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Point-based 3D detection approaches usually suffer from the severe point sampling imbalance problem between foreground and background. We observe that prior works have attempted to alleviate this imbalance by emphasizing foreground sampling. However, even adequate foreground sampling may be extremely unbalanced between nearby and distant objects, yielding unsatisfactory performance in detecting distant objects. To tackle this issue, this paper first proposes a novel method named Distant Object Augmented Set Abstraction and Regression (DO-SA&R) to enhance distant object detection, which is vital for the timely response of decision-making systems like autonomous driving. Technically, our approach first designs DO-SA with novel distant object augmented farthest point sampling (DO-FPS) to emphasize sampling on distant objects by leveraging both object-dependent and depth-dependent information. Then, we propose distant object augmented regression to reweight all the instance boxes for strengthening regression training on distant objects. In practice, the proposed DO-SA&R can be easily embedded into the existing modules, yielding consistent performance improvements, especially on detecting distant objects. Extensive experiments are conducted on the popular KITTI, nuScenes and Waymo datasets, and DO-SA&R demonstrates superior performance, especially for distant object detection. Our code is available at https://github.com/mikasa3lili/DO-SAR.
引用
收藏
页码:5852 / 5864
页数:13
相关论文
共 50 条
  • [41] Detection based object labeling of 3D point cloud for indoor scenes
    Liu, Wei
    Li, Shaozi
    Cao, Donglin
    Su, Songzhi
    Ji, Rongrong
    NEUROCOMPUTING, 2016, 174 : 1101 - 1106
  • [42] Point Cloud 3D Object Detection Based on Improved SECOND Algorithm
    Zhang Ying
    Jiang Liangliang
    Zhang Dongbo
    Duan Wanlin
    Sun Yue
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (08)
  • [43] Improved 3D Object Detector Under Snowfall Weather Condition Based on LiDAR Point Cloud
    Lin, Jia
    Yin, Huilin
    Yan, Jun
    Ge, Wancheng
    Zhang, Hao
    Rigoll, Gerhard
    IEEE SENSORS JOURNAL, 2022, 22 (16) : 16276 - 16292
  • [44] SCNet3D: Rethinking the Feature Extraction Process of Pillar-Based 3D Object Detection
    Li, Junru
    Wang, Zhiling
    Gong, Diancheng
    Wang, Chunchun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (01) : 770 - 784
  • [45] A 3D Object Recognition Method From LiDAR Point Cloud Based on USAE-BLS
    Tian, Yifei
    Song, Wei
    Chen, Long
    Fong, Simon
    Sung, Yunsick
    Kwak, Jeonghoon
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 15267 - 15277
  • [46] A Lightweight Model for 3D Point Cloud Object Detection
    Li, Ziyi
    Li, Yang
    Wang, Yanping
    Xie, Guangda
    Qu, Hongquan
    Lyu, Zhuoyang
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [47] SCDA-Net: Structure Completion and Density Awareness Network for LiDAR-Based 3D Object Detection
    Wu, Shuwen
    Yang, Jinfu
    Ma, Jiaqi
    Zhang, Shaochen
    Hao, Tianhao
    Li, Mingai
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (05): : 4268 - 4275
  • [48] PV-RCNN plus plus : Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection
    Shi, Shaoshuai
    Jiang, Li
    Deng, Jiajun
    Wang, Zhe
    Guo, Chaoxu
    Shi, Jianping
    Wang, Xiaogang
    Li, Hongsheng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (02) : 531 - 551
  • [49] Efficient 3D Object Detection Based on Pseudo-LiDAR Representation
    Meng, Haitao
    Li, Changcai
    Chen, Gang
    Chen, Long
    Knoll, Alois
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 1953 - 1964
  • [50] A Multi-Modal Fusion-Based 3D Multi-Object Tracking Framework With Joint Detection
    Wang, Xiyang
    Fu, Chunyun
    He, Jiawei
    Huang, Mingguang
    Meng, Ting
    Zhang, Siyu
    Zhou, Hangning
    Xu, Ziyao
    Zhang, Chi
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (01): : 532 - 539