Three-dimensional displays;
Feature extraction;
Point cloud compression;
Object detection;
Training;
Detectors;
Autonomous vehicles;
Point-based 3D object detection;
scene understanding;
autonomous driving;
D O I:
10.1109/TIP.2023.3326394
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Point-based 3D detection approaches usually suffer from the severe point sampling imbalance problem between foreground and background. We observe that prior works have attempted to alleviate this imbalance by emphasizing foreground sampling. However, even adequate foreground sampling may be extremely unbalanced between nearby and distant objects, yielding unsatisfactory performance in detecting distant objects. To tackle this issue, this paper first proposes a novel method named Distant Object Augmented Set Abstraction and Regression (DO-SA&R) to enhance distant object detection, which is vital for the timely response of decision-making systems like autonomous driving. Technically, our approach first designs DO-SA with novel distant object augmented farthest point sampling (DO-FPS) to emphasize sampling on distant objects by leveraging both object-dependent and depth-dependent information. Then, we propose distant object augmented regression to reweight all the instance boxes for strengthening regression training on distant objects. In practice, the proposed DO-SA&R can be easily embedded into the existing modules, yielding consistent performance improvements, especially on detecting distant objects. Extensive experiments are conducted on the popular KITTI, nuScenes and Waymo datasets, and DO-SA&R demonstrates superior performance, especially for distant object detection. Our code is available at https://github.com/mikasa3lili/DO-SAR.
机构:
Mississippi State Univ, James Worth Bagley Coll Engn, Dept Elect & Comp Engn, Starkville, MS 39762 USAMississippi State Univ, James Worth Bagley Coll Engn, Dept Elect & Comp Engn, Starkville, MS 39762 USA
机构:
Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
Deng, Pengzhen
Zhou, Li
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
Zhou, Li
Chen, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
机构:
Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R ChinaTsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
Huang, Dihe
Chen, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Tencent, Tencent YouTu Lab, Shenzhen 518057, Peoples R ChinaTsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
Chen, Ying
Ding, Yikang
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R ChinaTsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
Ding, Yikang
Liu, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Tencent, Tencent YouTu Lab, Shenzhen 518057, Peoples R ChinaTsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
Liu, Yong
Nie, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Tencent, Tencent YouTu Lab, Shenzhen 518057, Peoples R ChinaTsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
Nie, Qiang
Wang, Chengjie
论文数: 0引用数: 0
h-index: 0
机构:
Tencent, Tencent YouTu Lab, Shenzhen 518057, Peoples R ChinaTsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
Wang, Chengjie
Li, Zhiheng
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R ChinaTsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
机构:
Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
Fudan Univ, Key Lab Computat Neurosci & Brain Inspired Intell, Minist Educ, Shanghai 200433, Peoples R China
Fudan Univ, MOE Frontiers Ctr Brain Sci, Shanghai 200433, Peoples R China
Zhangjiang Fudan Int Innovat Ctr, Shanghai 200433, Peoples R ChinaFudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
Du, Liang
Ye, Xiaoqing
论文数: 0引用数: 0
h-index: 0
机构:
Baidu Inc, Beijing 100085, Peoples R ChinaFudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
Ye, Xiaoqing
Tan, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Baidu Inc, Beijing 100085, Peoples R ChinaFudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
Tan, Xiao
Johns, Edward
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Robot Learning Lab, London SW7 2BX, EnglandFudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
Johns, Edward
Chen, Bo
论文数: 0引用数: 0
h-index: 0
机构:
FAW Nanjing Technol Dev Co Ltd, Nanjing 211102, Peoples R ChinaFudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
Chen, Bo
Ding, Errui
论文数: 0引用数: 0
h-index: 0
机构:
Baidu Inc, Beijing 100085, Peoples R ChinaFudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
Ding, Errui
Xue, Xiangyang
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
Xue, Xiangyang
Feng, Jianfeng
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
Fudan Univ, Key Lab Computat Neurosci & Brain Inspired Intell, Minist Educ, Shanghai 200433, Peoples R China
Fudan Univ, MOE Frontiers Ctr Brain Sci, Shanghai 200433, Peoples R China
Zhejiang Normal Univ, Fudan ISTRI ZTNU Algorithm Ctr Brain Inspired Int, Jinhua 321004, Zhejiang, Peoples R ChinaFudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China