Generative Semantic Segmentation

被引:30
作者
Chen, Jiaqi [1 ]
Lu, Jiachen [1 ]
Zhu, Xiatian [2 ]
Zhang, Li [1 ]
机构
[1] Fudan Univ, Shanghai, Peoples R China
[2] Univ Surrey, Guildford, Surrey, England
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR | 2023年
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
D O I
10.1109/CVPR52729.2023.00687
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present Generative Semantic Segmentation (GSS), a generative learning approach for semantic segmentation. Uniquely, we cast semantic segmentation as an image-conditioned mask generation problem. This is achieved by replacing the conventional per-pixel discriminative learning with a latent prior learning process. Specifically, we model the variational posterior distribution of latent variables given the segmentation mask. To that end, the segmentation mask is expressed with a special type of image (dubbed as maskige). This posterior distribution allows to generate segmentation masks unconditionally. To achieve semantic segmentation on a given image, we further introduce a conditioning network. It is optimized by minimizing the divergence between the posterior distribution of maskige (i.e. segmentation masks) and the latent prior distribution of input training images. Extensive experiments on standard benchmarks show that our GSS can perform competitively to prior art alternatives in the standard semantic segmentation setting, whilst achieving a new state of the art in the more challenging cross-domain setting.
引用
收藏
页码:7111 / 7120
页数:10
相关论文
共 56 条
[11]  
Chen L C., 2017, RETHINKING ATROUS CO, P1
[12]  
Chen T., 2021, ICLR
[13]  
Chen Ting, 2022, GEN FRAMEWORK PANOPT
[14]  
Chen X, 2018, ROUTL STUD CHIN ECON, P6
[15]  
Cheng Bowen, 2022, CVPR, V7
[16]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[17]   ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes [J].
Dai, Angela ;
Chang, Angel X. ;
Savva, Manolis ;
Halber, Maciej ;
Funkhouser, Thomas ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2432-2443
[18]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[19]  
Esser P., 2020, CVPR
[20]  
Esser Patrick, 2021, CVPR