Fabrication and Characterization of a Leaky-Lens Photoconductive Antenna on Low-Temperature Grown GaAs Membranes

被引:5
作者
Bueno, Juan [1 ]
Sberna, Paolo Maria [2 ]
Fiorellini-Bernardis, Arturo [1 ]
Zhang, Huasheng [1 ]
Neto, Andrea [1 ]
Llombart, Nuria [1 ]
机构
[1] Delft Univ Technol, NL-2628 CD Delft, Netherlands
[2] Delft Univ Technol, Else Kooi Lab, NL-2628 CD Delft, Netherlands
关键词
Lenses; Antennas; Principal component analysis; Silicon; Gallium arsenide; Transmitting antennas; Etching; Leaky-lens antenna; membrane-based microantenna; photoconductive antenna (PCA); THz radiation; time-domain spectroscopy; TERAHERTZ; GENERATION; PULSES; SPECTROSCOPY; RADIATION;
D O I
10.1109/TTHZ.2023.3281770
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
State-of-the-art THz pulsed commercial systems operating over large bandwidth suffer from high dispersion or low radiation efficiency due to the poor coupling between the transmitter and receiver photoconductive antennas (PCAs). In this work, we present the fabrication and characterization of a leaky-lens PCA that has the potential to solve this problem. The presented PCA is based on a low-temperature grown gallium arsenide (LT-GaAs) membrane with a 1:15 bandwidth coverage (0.1-1.5 THz), where the frequency response is constant. In order to fabricate the PCA on an LT-GaAs membrane, a novel fabrication process is developed. This process is dramatically faster than previously used processes (similar to 1.5 h instead of similar to 20 h). Furthermore, an experimental validation of the radiated power together with the comparison to a standard bow-tie-based PCA fabricated on the same LT-GaAs wafer is shown in this article. We show that the PCA source on the LT-GaAs membrane is more efficient due to the enhanced leaky wave radiation. The leaky-lens PCA stands out as a great candidate to improve the coupling efficiency in THz pulsed commercial systems, where the maximum laser power that can be used is limited by the dispersion in the optic fiber.
引用
收藏
页码:431 / 439
页数:9
相关论文
共 35 条
[1]  
ammt, 2021, About us
[2]  
[Anonymous], 2021, GRASP 10.5.0
[3]  
[Anonymous], 2021, Specialty Coating Systems
[4]   PICOSECOND PHOTOCONDUCTING HERTZIAN DIPOLES [J].
AUSTON, DH ;
CHEUNG, KP ;
SMITH, PR .
APPLIED PHYSICS LETTERS, 1984, 45 (03) :284-286
[5]   Photoconductive emitters for pulsed terahertz generation [J].
Bacon, David R. ;
Madeo, Julien ;
Dani, Keshav M. .
JOURNAL OF OPTICS, 2021, 23 (06)
[6]   Accurate Beam Profile Characterization in THz Transmission Imaging Systems [J].
Baez-Chorro, Miguel A. ;
Uso-Izquierdo, Manel ;
Vidal, Borja .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2021, 11 (05) :577-582
[7]   Time-Domain Modelling of Pulsed Photoconducting Sources-Part II: Characterization of an LT GaAs Bow-Tie Antenna [J].
Bernardis, Arturo Fiorellini ;
Sberna, Paolo Maria ;
Bueno, Juan ;
Zhang, Huasheng ;
Llombart, Nuria ;
Neto, Andrea .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (03) :2536-2545
[8]  
Bryce C., 1996, A kinetic study of gallium arsenide etching in H2O2-NH4OH-H2O solutions
[9]  
CST Microwave Studio, 2021, About us
[10]   A Connected Array of Coherent Photoconductive Pulsed Sources to Generate mW Average Power in the Submillimeter Wavelength Band [J].
Garufo, Alessandro ;
Sberna, Paolo Maria ;
Carluccio, Giorgio ;
Freeman, Joshua R. ;
Bacon, David R. ;
Li, Lianhe ;
Bueno, Juan ;
Baselmans, Jochem J. A. ;
Linfield, Edmund H. ;
Davies, Alexander G. ;
Llombart, Nuria ;
Neto, Andrea .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2019, 9 (03) :221-236