The responses of soil microbial characteristics to nitrogen addition and biochar amendment in a Larix kaempferi plantation

被引:3
|
作者
Hu, Chen [1 ,2 ]
Ma, Zhiyuan [1 ,2 ]
Gong, Jinyu [1 ,2 ]
Lei, Jingpin [1 ,2 ]
Cui, Hongxia [3 ,4 ]
机构
[1] Chinese Acad Forestry, Res Inst Forestry, Key Lab Forest Silviculture State Forestry & Grass, Beijing, Peoples R China
[2] Nanjing Forestry Univ, Coinnovat Ctr Sustainable Forestry Southern China, Nanjing, Peoples R China
[3] Hubei Acad Forestry, Wuhan, Peoples R China
[4] Hubei Shennongjia Forestry Ecosyst Res Stn, Shennongjia, Peoples R China
来源
关键词
biochar amendment; nitrogen addition; soil microbial properties; soil chemical properties; microbial communities; LONG-TERM NITROGEN; ENZYME-ACTIVITIES; CARBON SEQUESTRATION; BACTERIAL DIVERSITY; ORGANIC-CARBON; RESPIRATION; DEPOSITION; FERTILIZATION; EMISSIONS; COMMUNITY;
D O I
10.3389/fevo.2023.1220111
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Nitrogen (N) deposition is an important environmental factor that can change soil chemical properties. It can also alter the characteristics of microbial communities. The incorporation of biochar into soils is considered a potential strategy to enhance carbon (C) storage in soil and modify the impacts of N deposition. However, the impacts of biochar on the microbial characteristics of soil after short-term N deposition in subtropical plantations remain poorly understood. Here, we investigated the effects of biochar application (0, 5, 10 t ha(-1)) on soil chemical traits and microbial characteristics (extracellular enzyme activities, microbial community and microbial biomass) in a Larix kaempferi plantation in Shennongjia, China, under N addition (0, 50, 100 kg N ha(-1) yr(-1)) during two growing seasons. We found that simulated N deposition significant increased soil total nitrogen (TN), nitrate nitrogen (NO3--N) and total phosphorus (TP) concentrations, while heavy N deposition (100 kg N ha(-1) yr(-1)) significant decreased soil microbial biomass nitrogen (MBN) concentration and & beta;-glucosidase (& beta;-GC) activity. Biochar amendment significantly increased soil microbial biomass, TN and soil organic carbon (SOC) concentrations. Both N addition and biochar amendment significantly altered Ascomycota and Basidiomycota relative abundance, with biochar amendment increasing Ascomycota relative abundance and decreasing Mortierellomycota relative abundance under heavy N deposition. Fungal diversity showed a positive correlation to TN, TP and NO3--N concentrations, but a negative correlation to MBN. Biochar addition inhibited the increase in soil NO3--N concentration caused by high N addition in the plantation, and influenced the change in the composition of microbial community caused by N addition. Our piecewise structural equation model suggested that N addition affected MBN and fungal diversity directly or indirectly via its effects on soil enzyme activities and properties. In contrast, there were no significant direct or indirect effects on bacterial diversity among all factors. These results improve our understanding of the influence and mechanisms of N addition and biochar amendment on soil microbial characteristics in subtropical coniferous plantations in the short term, and can provide a valuable reference for predicting the future effects of N deposition on soils in this region's plantation.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Responses of soil phosphorus availability to nitrogen addition in a legume and a non-legume plantation
    Chen, Hao
    Chen, Meiling
    Li, Dejun
    Mao, Qinggong
    Zhang, Wei
    Mo, Jiangming
    GEODERMA, 2018, 322 : 12 - 18
  • [32] The addition of biochar and nitrogen alters the microbial community and their cooccurrence network by affecting soil properties
    Yuan, Minshu
    Zhu, Xiaozhen
    Sun, Haoran
    Song, Jingrong
    Li, Chen
    Shen, Yufang
    Li, Shiqing
    CHEMOSPHERE, 2023, 312
  • [33] Biochar with or Without Nitrogen Fertilizer Influences Soil Microbial Carbon Utilization, Bacterial Diversity, and Nitrogen Dynamics in a Eucalyptus Plantation
    Xie, Chuan
    Lv, Chengqun
    Huang, Baoling
    Chen, Zhenfei
    Ren, Han
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2025, 25 (01) : 465 - 477
  • [34] Effects of biochar and litter on carbon and nitrogen mineralization and soil microbial community structure in a China fir plantation
    Ying Li
    Chuifan Zhou
    Yunxiao Qiu
    Mulualem Tigabu
    Xiangqing Ma
    Journal of Forestry Research, 2019, 30 (05) : 1913 - 1923
  • [35] Effects of biochar and litter on carbon and nitrogen mineralization and soil microbial community structure in a China fir plantation
    Ying Li
    Chuifan Zhou
    Yunxiao Qiu
    Mulualem Tigabu
    Xiangqing Ma
    Journal of Forestry Research, 2019, 30 : 1913 - 1923
  • [36] Interactive Effects of Biochar and Nitrogen Fertilizer on Plant Performance Mediated by Soil Microbial Community in a Eucalypt Plantation
    Ren, Han
    Wang, Zhiyuan
    Lv, Chengqun
    Huang, Baoling
    Sun, Xu
    Qin, Fangcuo
    FORESTS, 2024, 15 (07):
  • [37] Effects of biochar and litter on carbon and nitrogen mineralization and soil microbial community structure in a China fir plantation
    Li, Ying
    Zhou, Chuifan
    Qiu, Yunxiao
    Tigabu, Mulualem
    Ma, Xiangqing
    JOURNAL OF FORESTRY RESEARCH, 2019, 30 (05) : 1913 - 1923
  • [38] Sewage sludge as a soil amendment in a Larix decidua plantation: Effects on tree growth and floristic diversity
    Mohamed, Bourioug
    Olivier, Girardclos
    Francois, Gillet
    Laurence, Alaoui-Sehmer
    Bourgeade, Pascale
    Badr, Alaoui-Sosse
    Lotfi, Aleya
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 621 : 291 - 301
  • [39] Variable responses of nitrification and denitrification in a paddy soil to long-term biochar amendment and short-term biochar addition
    He, Lili
    Shan, Jun
    Zhao, Xu
    Wang, Shenqiang
    Yan, Xiaoyuan
    CHEMOSPHERE, 2019, 234 : 558 - 567
  • [40] Microbial Responses to Biochar Soil Amendment and Influential Factors: A Three-Level Meta-Analysis
    Kerner, Patricia
    Struhs, Ethan
    Mirkouei, Amin
    Aho, Ken
    Lohse, Kathleen A.
    Dungan, Robert S.
    You, Yaqi
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (48) : 19838 - 19848