Three dimensional computed tomography texture analysis of pulmonary lesions: Does radiomics allow differentiation between carcinoma, neuroendocrine tumor and organizing pneumonia?

被引:12
作者
Adelsmayr, Gabriel [1 ]
Janisch, Michael [1 ]
Mueller, Heimo [2 ]
Holzinger, Andreas [3 ]
Talakic, Emina [1 ]
Janek, Elmar [1 ]
Streit, Simon [2 ]
Fuchsjaeger, Michael [1 ]
Schoellnast, Helmut [1 ,4 ]
机构
[1] Med Univ Graz, Dept Radiol, Div Gen Radiol, Auenbruggerpl 9, A-8036 Graz, Austria
[2] Med Univ Graz, Diagnost & Res Inst Pathol, Diagnost & Res Ctr Mol Biomed, Neue Stiftingtalstr 6, A-8010 Graz, Austria
[3] Med Univ Graz, Inst Med Informat Stat & Documentat, Auenbruggerpl2-9-V, A-8036 Graz, Austria
[4] LKH Graz II, Inst Radiol, Gostinger Str 22, A-8020 Graz, Austria
关键词
Radiographic image interpretation; Tomography; X-ray computed; Lung neoplasms; Pneumonia; Humans; CELL LUNG-CANCER; POTENTIAL MARKER; CT; HETEROGENEITY; NODULES; REPRODUCIBILITY; CLASSIFICATION; SEGMENTATION; RELIABILITY; FEATURES;
D O I
10.1016/j.ejrad.2023.110931
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To investigate whether CT texture analysis allows differentiation between adenocarcinomas, squamous cell carcinomas, carcinoids, small cell lung cancers and organizing pneumonia and between carcinomas and neuroendocrine tumors.Method: This retrospective study included patients 133 patients (30 patients with organizing pneumonia, 30 patients with adenocarcinoma, 30 patients with squamous cell carcinoma, 23 patients with small cell lung cancer, 20 patients with carcinoid), who underwent CT-guided biopsy of the lung and had a corresponding histopathologic diagnosis. Pulmonary lesions were segmented in consensus by two radiologists with and without a threshold of-50HU in three dimensions. Groupwise comparisons were performed to assess for differences between all five above-listed entities and between carcinomas and neuroendocrine tumors.Results: Pairwise comparisons of the five entities revealed 53 statistically significant texture features when using no HU-threshold and 6 statistically significant features with a threshold of-50HU. The largest AUC (0.818 [95%CI 0.706-0.930]) was found for the feature waveletHHH_glszm_SmallAreaEmphasis for discrimination of carcinoid from the other entities when using no HUthreshold. In differentiating neuroendocrine tumors from carcinomas, 173 parameters proved statistically significant when using no HU threshold versus 52 parameters when using a-50HU-threshold. The largest AUC (0.810 [95%CI 0.728-0,893]) was found for the parameter original_glcm_Correlation for discrimination of neuroendocrine tumors from carcinomas when using no HU-threshold.Conclusions: CT texture analysis revealed features that differed significantly between malignant pulmonary lesions and organizing pneumonia and between carcinomas and neuroendocrine tumors of the lung. Applying a HU-threshold for segmentation substantially influenced the results of texture analysis.
引用
收藏
页数:7
相关论文
共 38 条
[1]   CT texture analysis reliability in pulmonary lesions: the influence of 3D vs. 2D lesion segmentation and volume definition by a Hounsfield-unit threshold [J].
Adelsmayr, Gabriel ;
Janisch, Michael ;
Kaufmann-Buehler, Ann-Katrin ;
Holter, Magdalena ;
Talakic, Emina ;
Janek, Elmar ;
Holzinger, Andreas ;
Fuchsjaeger, Michael ;
Schoellnast, Helmut .
EUROPEAN RADIOLOGY, 2023, 33 (05) :3064-3071
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Toward a better understanding of texture in vascular CT scan simulated images [J].
Bézy-Wendling, J ;
Kretowski, M ;
Rolland, Y ;
Le Bidon, W .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2001, 48 (01) :120-124
[4]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21609, 10.3322/caac.21492]
[5]   Computerized Texture Analysis of Persistent Part-Solid Ground-Glass Nodules: Differentiation of Preinvasive Lesions from Invasive Pulmonary Adenocarcinomas [J].
Chae, Hee-Dong ;
Park, Chang Min ;
Park, Sang Joon ;
Lee, Sang Min ;
Kim, Kwang Gi ;
Goo, Jin Mo .
RADIOLOGY, 2014, 273 (01) :285-293
[6]   Radiomic features analysis in computed tomography images of lung nodule classification [J].
Chen, Chia-Hung ;
Chang, Chih-Kun ;
Tu, Chih-Yen ;
Liao, Wei-Chih ;
Wu, Bing-Ru ;
Chou, Kuei-Ting ;
Chiou, Yu-Rou ;
Yang, Shih-Neng ;
Zhang, Geoffrey ;
Huang, Tzung-Chi .
PLOS ONE, 2018, 13 (02)
[7]   Solitary pulmonary nodules: Part I. Morphologic evaluation for differentiation of benign and malignant lesions [J].
Erasmus, JJ ;
Connolly, JE ;
McAdams, HP ;
Roggli, VL .
RADIOGRAPHICS, 2000, 20 (01) :43-58
[8]   Non-Small Cell Lung Cancer: Histopathologic Correlates for Texture Parameters at CT [J].
Ganeshan, Balaji ;
Goh, Vicky ;
Mandeville, Henry C. ;
Quan Sing Ng ;
Hoskin, Peter J. ;
Miles, Kenneth A. .
RADIOLOGY, 2013, 266 (01) :326-336
[9]   Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival [J].
Ganeshan, Balaji ;
Panayiotou, Elleny ;
Burnand, Kate ;
Dizdarevic, Sabina ;
Miles, Ken .
EUROPEAN RADIOLOGY, 2012, 22 (04) :796-802
[10]   Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage [J].
Ganeshan, Balaji ;
Abaleke, Sandra ;
Young, Rupert C. D. ;
Chatwin, Christopher R. ;
Miles, Kenneth A. .
CANCER IMAGING, 2010, 10 (01) :137-143