Strong majorization uncertainty relations and experimental verifications

被引:1
|
作者
Yuan, Yuan [1 ,2 ,3 ]
Xiao, Yunlong [4 ,5 ]
Hou, Zhibo [2 ,3 ]
Fei, Shao-Ming [6 ,7 ]
Gour, Gilad [8 ,9 ]
Xiang, Guo-Yong [2 ,3 ]
Li, Chuan-Feng [2 ,3 ]
Guo, Guang-Can [2 ,3 ]
机构
[1] East China Univ Sci & Technol, Sch Phys, Shanghai 200237, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Peoples R China
[4] ASTAR, Inst High Performance Comp, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore
[5] Nanyang Technol Univ, Sch Phys & Math Sci, Nanyang Quantum Hub, Singapore 637371, Singapore
[6] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[7] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[8] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[9] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
基金
上海市自然科学基金; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会; 北京市自然科学基金;
关键词
ENTROPIC UNCERTAINTY; QUANTUM; PRINCIPLE;
D O I
10.1038/s41534-023-00736-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In spite of enormous theoretical and experimental progress in quantum uncertainty relations, the experimental investigation of the most current, and universal formalism of uncertainty relations, namely majorization uncertainty relations (MURs), has not been implemented yet. A major problem is that previous studies of majorization uncertainty relations mainly focus on their mathematical expressions, leaving the physical interpretation of these different forms unexplored. To address this problem, we employ a guessing game formalism to reveal physical differences between diverse forms of majorization uncertainty relations. Furthermore, we tighter the bounds of MURs by using flatness processes. Finally, we experimentally verify strong MURs in the photonic system to benchmark our theoretical results.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Weighted Uncertainty Relations
    Xiao, Yunlong
    Jing, Naihuan
    Li-Jost, Xianqing
    Fei, Shao-Ming
    SCIENTIFIC REPORTS, 2016, 6
  • [42] Probing Uncertainty Relations in Non-Commutative Space
    Chattopadhyay, Pritam
    Mitra, Ayan
    Paul, Goutam
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (08) : 2619 - 2631
  • [43] Note on semiclassical uncertainty relations
    Olivares, F.
    Pennini, F.
    Ferri, G. L.
    Plastino, A.
    BRAZILIAN JOURNAL OF PHYSICS, 2009, 39 (2A) : 503 - 506
  • [44] Uncertainty relations and indistinguishable particles
    Hasse, Cael L.
    PHYSICAL REVIEW A, 2012, 86 (06):
  • [45] Mutually Exclusive Uncertainty Relations
    Xiao, Yunlong
    Jing, Naihuan
    SCIENTIFIC REPORTS, 2016, 6
  • [46] Review on entropic uncertainty relations
    Li Li-Juan
    Ming Fei
    Song Xue-Ke
    Ye Liu
    Wang Dong
    ACTA PHYSICA SINICA, 2022, 71 (07)
  • [47] Uncertainty relations and precession of perihelion
    Scardigli, Fabio
    Casadio, Roberto
    EMQM15: EMERGENT QUANTUM MECHANICS 2015, 2016, 701
  • [48] Bekenstein bound and uncertainty relations
    Buoninfante, Luca
    Luciano, Giuseppe Gaetano
    Petruzziello, Luciano
    Scardigli, Fabio
    PHYSICS LETTERS B, 2022, 824
  • [49] Additivity of entropic uncertainty relations
    Schwonnek, Rene
    QUANTUM, 2018, 2
  • [50] The uncertainty relations in quantum mechanics
    Sen, D.
    CURRENT SCIENCE, 2014, 107 (02): : 203 - 218