Strong majorization uncertainty relations and experimental verifications

被引:1
|
作者
Yuan, Yuan [1 ,2 ,3 ]
Xiao, Yunlong [4 ,5 ]
Hou, Zhibo [2 ,3 ]
Fei, Shao-Ming [6 ,7 ]
Gour, Gilad [8 ,9 ]
Xiang, Guo-Yong [2 ,3 ]
Li, Chuan-Feng [2 ,3 ]
Guo, Guang-Can [2 ,3 ]
机构
[1] East China Univ Sci & Technol, Sch Phys, Shanghai 200237, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Peoples R China
[4] ASTAR, Inst High Performance Comp, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore
[5] Nanyang Technol Univ, Sch Phys & Math Sci, Nanyang Quantum Hub, Singapore 637371, Singapore
[6] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[7] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[8] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[9] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
基金
上海市自然科学基金; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会; 北京市自然科学基金;
关键词
ENTROPIC UNCERTAINTY; QUANTUM; PRINCIPLE;
D O I
10.1038/s41534-023-00736-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In spite of enormous theoretical and experimental progress in quantum uncertainty relations, the experimental investigation of the most current, and universal formalism of uncertainty relations, namely majorization uncertainty relations (MURs), has not been implemented yet. A major problem is that previous studies of majorization uncertainty relations mainly focus on their mathematical expressions, leaving the physical interpretation of these different forms unexplored. To address this problem, we employ a guessing game formalism to reveal physical differences between diverse forms of majorization uncertainty relations. Furthermore, we tighter the bounds of MURs by using flatness processes. Finally, we experimentally verify strong MURs in the photonic system to benchmark our theoretical results.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Entropic uncertainty relations under the relativistic motion
    Feng, Jun
    Zhang, Yao-Zhong
    Gould, Mark D.
    Fan, Heng
    PHYSICS LETTERS B, 2013, 726 (1-3) : 527 - 532
  • [32] Conditional entropic uncertainty relations for Tsallis entropies
    Kurzyk, Dariusz
    Pawela, Lukasz
    Puchala, Zbigniew
    QUANTUM INFORMATION PROCESSING, 2018, 17 (08)
  • [33] Angular performance measure for tighter uncertainty relations
    Hradil, Z.
    Rehacek, J.
    Klimov, A. B.
    Rigas, I.
    Sanchez-Soto, L. L.
    PHYSICAL REVIEW A, 2010, 81 (01)
  • [34] Uncertainty Relations from Simple Entropic Properties
    Coles, Patrick J.
    Colbeck, Roger
    Yu, Li
    Zwolak, Michael
    PHYSICAL REVIEW LETTERS, 2012, 108 (21)
  • [35] GENERALISED UNCERTAINTY RELATIONS AND THE PROBLEM OF DARK ENERGY
    Lake, Matthew J.
    ROMANIAN ASTRONOMICAL JOURNAL, 2022, 32 (01): : 3 - 14
  • [36] Experimental investigation of quantum entropic uncertainty relations for multiple measurements in pure diamond
    Xing, Jian
    Zhang, Yu-Ran
    Liu, Shang
    Chang, Yan-Chun
    Yue, Jie-Dong
    Fan, Heng
    Pan, Xin-Yu
    SCIENTIFIC REPORTS, 2017, 7
  • [37] Measurement uncertainty relations
    Busch, Paul
    Lahti, Pekka
    Werner, Reinhard F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (04)
  • [38] Uncertainty Relations for Coherence
    Luo, Shun-Long
    Sun, Yuan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (12) : 1443 - 1447
  • [39] Remarks on the uncertainty relations
    Urbanowski, Krzysztof
    MODERN PHYSICS LETTERS A, 2020, 35 (26)
  • [40] TWO UNCERTAINTY RELATIONS
    Skala, Lubomir
    Kapsa, Vojtech
    COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 2011, 76 (05) : 399 - 406