Strong majorization uncertainty relations and experimental verifications

被引:1
|
作者
Yuan, Yuan [1 ,2 ,3 ]
Xiao, Yunlong [4 ,5 ]
Hou, Zhibo [2 ,3 ]
Fei, Shao-Ming [6 ,7 ]
Gour, Gilad [8 ,9 ]
Xiang, Guo-Yong [2 ,3 ]
Li, Chuan-Feng [2 ,3 ]
Guo, Guang-Can [2 ,3 ]
机构
[1] East China Univ Sci & Technol, Sch Phys, Shanghai 200237, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Peoples R China
[4] ASTAR, Inst High Performance Comp, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore
[5] Nanyang Technol Univ, Sch Phys & Math Sci, Nanyang Quantum Hub, Singapore 637371, Singapore
[6] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[7] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[8] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[9] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
基金
上海市自然科学基金; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会; 北京市自然科学基金;
关键词
ENTROPIC UNCERTAINTY; QUANTUM; PRINCIPLE;
D O I
10.1038/s41534-023-00736-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In spite of enormous theoretical and experimental progress in quantum uncertainty relations, the experimental investigation of the most current, and universal formalism of uncertainty relations, namely majorization uncertainty relations (MURs), has not been implemented yet. A major problem is that previous studies of majorization uncertainty relations mainly focus on their mathematical expressions, leaving the physical interpretation of these different forms unexplored. To address this problem, we employ a guessing game formalism to reveal physical differences between diverse forms of majorization uncertainty relations. Furthermore, we tighter the bounds of MURs by using flatness processes. Finally, we experimentally verify strong MURs in the photonic system to benchmark our theoretical results.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Strong majorization entropic uncertainty relations
    Rudnicki, Lukasz
    Puchala, Zbigniew
    Zyczkowski, Karol
    PHYSICAL REVIEW A, 2014, 89 (05):
  • [2] Strong unitary uncertainty relations
    Yu, Bing
    Jing, Naihuan
    Li-Jost, Xianqing
    PHYSICAL REVIEW A, 2019, 100 (02)
  • [3] Experimental investigation of conditional majorization uncertainty relations in the presence of quantum memory
    Zhu, Gaoyan
    Liu, Aoxiang
    Xiao, Lei
    Wang, Kunkun
    Qu, Dengke
    Li, Junli
    Qiao, Congfeng
    Xue, Peng
    PHYSICAL REVIEW A, 2023, 108 (05)
  • [4] Experimental demonstration of strong unitary uncertainty relations
    Qu, Dengke
    Wang, Kunkun
    Xiao, Lei
    Zhan, Xiang
    Xue, Peng
    OPTICS EXPRESS, 2021, 29 (18) : 29567 - 29575
  • [5] On Majorization Uncertainty Relations in the Presence of a Minimal Length
    Rastegin, Alexey E.
    PHYSICS, 2022, 4 (04): : 1413 - 1425
  • [6] Majorization entropic uncertainty relations for quantum operations
    Rastegin, Alexey E.
    Zyczkowski, Karol
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (35)
  • [7] Majorization uncertainty relations for mixed quantum states
    Puchala, Zbigniew
    Rudnicki, Lukasz
    Krawiec, Aleksandra
    Zyczkowski, Karol
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (17)
  • [8] Experimental investigation of entropic uncertainty relations and coherence uncertainty relations
    Ding, Zhi-Yong
    Yang, Huan
    Wang, Dong
    Yuan, Hao
    Yang, Jie
    Ye, Liu
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [9] Entanglement Detection via Direct-Sum Majorization Uncertainty Relations
    Wang, Kun
    Wu, Nan
    Song, Fangmin
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [10] Experimental test of generalized multipartite entropic uncertainty relations
    Wang, Zhao-An
    Xie, Bo-Fu
    Ming, Fei
    Wang, Yi-Tao
    Wang, Dong
    Meng, Yu
    Liu, Zheng-Hao
    Xu, Kai
    Tang, Jian-Shun
    Ye, Liu
    Li, Chuan-Feng
    Guo, Guang-Can
    Kais, Sabre
    PHYSICAL REVIEW A, 2024, 110 (06)