Some Convexity and Monotonicity Results of Trace Functionals

被引:0
|
作者
Zhang, Haonan [1 ,2 ]
机构
[1] IST Austria, IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92617 USA
来源
ANNALES HENRI POINCARE | 2024年 / 25卷 / 04期
基金
奥地利科学基金会;
关键词
D O I
10.1007/s00023-023-01345-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we prove the convexity of trace functionals (A, B, C) bar right arrow Tr vertical bar B-p AC(q)vertical bar(s), for parameters (p, q, s) that are best possible, where B and C are any n-by-n positive-definite matrices, and A is any n-by-n matrix. We also obtain the monotonicity versions of trace functionals of this type. As applications, we extend some results in Carlen et al. (Linear Algebra Appl 490:174-185, 2016), Hiai and Petz (Publ Res Inst Math Sci 48(3):525-542, 2012) and resolve a conjecture in Al-Rashed and Zegarli ' nski (Infin Dimens Anal Quantum Probab Relat Top 17(4):1450029, 2014) in the matrix setting. Other conjectures in Al-Rashed and Zegarlinski (Infin Dimens Anal Quantum Probab Relat Top 17(4):1450029, 2014) will also be discussed. We also show that some related trace functionals are not concave in general. Such concavity results were expected to hold in different problems.
引用
收藏
页码:2087 / 2106
页数:20
相关论文
共 50 条
  • [1] Some Convexity and Monotonicity Results of Trace Functionals
    Haonan Zhang
    Annales Henri Poincaré, 2024, 25 : 2087 - 2106
  • [2] SOME MONOTONICITY AND CONVEXITY RESULTS FOR INTEGRAL MEANS
    LAURENCE, P
    LORTZ, D
    SPIES, G
    SORIA, F
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1993, 48 (8-9): : 841 - 843
  • [3] Convexity of trace functionals and Schrodinger operators
    Kaiser, HC
    Neidhardt, H
    Rehberg, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 234 (01) : 45 - 69
  • [4] Superadditivity, Monotonicity, and Exponential Convexity of the Petrovic-Type Functionals
    Butt, Saad Ihsan
    Krnic, Mario
    Pecaric, Josip
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [5] On monotonicity of some functionals under rearrangements
    Bankevich, S. V.
    Nazarov, A. I.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) : 627 - 647
  • [6] On monotonicity of some functionals under rearrangements
    S. V. Bankevich
    A. I. Nazarov
    Calculus of Variations and Partial Differential Equations, 2015, 53 : 627 - 647
  • [7] MONOTONICITY OF SOME FUNCTIONALS IN THE FAMILY OF UNIVALENT FUNCTIONS
    NETANYAHU, E
    SCHIFFER, M
    ISRAEL JOURNAL OF MATHEMATICS, 1979, 32 (01) : 14 - 26
  • [8] ON THE CONVEXITY OF SOME TRACE FUNCTIONS
    Shi, Guanghua
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (03): : 1017 - 1025
  • [9] On ε-monotonicity and ε-convexity
    Luc, DT
    Van Ngai, H
    Thera, M
    CALCULUS OF VARIATIONS AND DIFFERENTIAL EQUATIONS, 2000, 410 : 82 - 100
  • [10] SOME TRACE MONOTONICITY PROPERTIES AND APPLICATIONS
    Combes, Jean-Michel
    Hislop, Peter D.
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (03): : 394 - 401