Realizing high-temperature steam electrolysis on tubular solid oxide electrolysis cells sufficing multiple and rapid start-up

被引:9
|
作者
Li, Guangdong [1 ]
Gou, Yunjie [1 ]
Ren, Rongzheng [1 ]
Xu, Chunming [1 ]
Qiao, Jinshuo [1 ]
Sun, Wang [1 ]
Wang, Zhenhua [1 ]
Sun, Kening [1 ]
机构
[1] Beijing Inst Technol, Sch Chem & Chem Engn, Beijing Key Lab Chem Power Source & Green Catalysi, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
High-temperature steam electrolysis; Hydrogen production; Tubular solid oxide electrolysis cells; Fuel electrode; Multiple and rapid start-up; OXYGEN-ELECTRODE; CO-ELECTROLYSIS; ELECTROCHEMICAL PERFORMANCE; SYMMETRICAL ELECTRODE; AIR ELECTRODE; GENERATION; CATHODE;
D O I
10.1016/j.ceramint.2022.12.291
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-temperature steam electrolysis (HTSE) via solid oxide electrolysis cell (SOEC) enables realizing hydrogen production efficiently and eco-friendly due to the high-temperature operation. To cater to the practical application and enable flexible connection to the unpredictable and intermittent renewable sources, the ability to multiply and rapidly start up means vital for these SOEC devices. Herein, one novel structural tubular SOEC has been proposed and fabricated, adopting YSZ and Ni-doped Sr(Ti, Fe)O3 as the inert support and fuel electrode, respectively, replacing the traditional Ni-cermet. The as-fabricated tubular cell revealed ability to electrolyze steam under hydrogen-free atmosphere, achieving 0.79 and 1.36 A at the applied voltage of 1.3 V and 1.6 V at 800 degrees C. Moreover, not only the structure but also the performance showed no obvious degradation during the ten-time start-pause cycle test over 80 h. This work demonstrates the great potential of SOEC devices in the future power-to-hydrogen technology.
引用
收藏
页码:14101 / 14108
页数:8
相关论文
共 50 条
  • [21] Electrochemical performance of solid oxide electrolysis cell electrodes under high-temperature coelectrolysis of steam and carbon dioxide
    Kim-Lohsoontorn, Pattaraporn
    Bae, Joongmyeon
    JOURNAL OF POWER SOURCES, 2011, 196 (17) : 7161 - 7168
  • [22] Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell
    Koh, JaeHwa
    Yoon, DuckJoo
    Oh, Chang H.
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2010, 47 (07) : 599 - 607
  • [23] High Temperature Electrolysis in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells
    Ebbesen, Sune Dalgaard
    Jensen, Soren Hojgaard
    Hauch, Anne
    Mogensen, Mogens Bjerg
    CHEMICAL REVIEWS, 2014, 114 (21) : 10697 - 10734
  • [24] Recent advances in high temperature electrolysis using solid oxide fuel cells: A review
    Laguna-Bercero, M. A.
    JOURNAL OF POWER SOURCES, 2012, 203 : 4 - 16
  • [25] Optimization of the electrode-supported tubular solid oxide cells for application on fuel cell and steam electrolysis
    Shao, Le
    Wang, Shaorong
    Qian, Jiqin
    Ye, Xiaofeng
    Wen, Tinglian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (11) : 4272 - 4280
  • [26] Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells
    Chen, Xinbing
    Guan, Chengzhi
    Xiao, Guoping
    Du, Xianlong
    Wang, Jian-Qiang
    FARADAY DISCUSSIONS, 2015, 182 : 341 - 351
  • [27] High-performing electrolyte-supported symmetrical solid oxide electrolysis cells operating under steam electrolysis and co-electrolysis modes
    Bernadet, Lucile
    Moncasi, Carlos
    Torrell, Marc
    Tarancon, Albert
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (28) : 14208 - 14217
  • [28] Unveiling the high-temperature degradation mechanism of solid oxide electrolysis cells through direct imaging of nanoscale interfacial phenomena
    Choi, Haneul
    Shin, Jisu
    Yeon, Changho
    Park, Sun-Young
    Bae, Shin-Tae
    Kim, Ji Wan
    Lee, Jong-Ho
    Park, Jin-Woo
    Lee, Chan-Woo
    Yoon, Kyung Joong
    Chang, Hye Jung
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (15) : 5410 - 5420
  • [29] Steam Electrolysis vs. Co-Electrolysis: Mechanistic Studies of Long-Term Solid Oxide Electrolysis Cells
    Wolf, Stephanie E.
    Vibhu, Vaibhav
    Troester, Eric
    Vinke, Izaak C.
    Eichel, Rudiger-A
    de Haart, L. G. J.
    ENERGIES, 2022, 15 (15)
  • [30] Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production
    Liu Mingyi
    Yu Bo
    Xu Jingming
    Chen Jing
    JOURNAL OF POWER SOURCES, 2008, 177 (02) : 493 - 499