Parameter Estimation for Deformable Objects in Robotic Manipulation Tasks

被引:1
|
作者
Millard, David [1 ]
Preiss, James A. [1 ]
Barbic, Jernej [1 ]
Sukhatme, Gaurav S. [1 ]
机构
[1] Univ Southern Calif, Dept Comp Sci, Los Angeles, CA 90089 USA
来源
关键词
Dynamical systems; Parameter estimation; Deformable objects;
D O I
10.1007/978-3-031-25555-7_16
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We consider the problem of identifying material parameters of a deformable object, such as elastic moduli, by non-destructive robotic manipulation. We assume known geometry and mass, a reliable fixed grasp, and the ability to track the positions of a few points on the object surface. We collect a dataset of grasp pose sequences and corresponding point position sequences. We represent the object by a tetrahedral Finite Element Method (FEM) mesh and optimize the material parameters to minimize the difference between the real and predicted observations. We use a collocation-type formulation where the sequence of FEM mesh states are decision variables, and the dynamics are encoded as constraints. Sparsity patterns in the constraints make this problem tractable despite the large number of variables. Experiments show that our approach is computationally feasible and able to adequately re-identificy simulated material parameters.
引用
收藏
页码:239 / 251
页数:13
相关论文
共 50 条
  • [41] Interactive Robotic Manipulation of Elastic Objects
    Duenser, Simon
    Bern, James M.
    Poranne, Roi
    Coros, Stelian
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 3476 - 3481
  • [42] Robotic Manipulation of Elongated and Elastic Objects
    Kicki, Piotr
    Bednarek, Michal
    Walas, Krzysztof
    2019 SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA 2019), 2019, : 23 - 27
  • [43] Robotic manipulation of multiple objects as a POMDP
    Pajarinen, Joni
    Kyrki, Ville
    ARTIFICIAL INTELLIGENCE, 2017, 247 : 213 - 228
  • [44] On parameter estimation in deformable models
    Fisker, R
    Carstensen, JM
    FOURTEENTH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1 AND 2, 1998, : 762 - 766
  • [45] Generating and Transferring Priors for Causal Bayesian Network Parameter Estimation in Robotic Tasks
    Diehl, Maximilian
    Ramirez-Amaro, Karinne
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1011 - 1018
  • [46] Collaborative Manipulation of Deformable Objects with Predictive Obstacle Avoidance
    Aksoy, Burak
    Wen, John T.
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 16766 - 16772
  • [47] Manipulation of Deformable Objects Without Modeling and Simulating Deformation
    Berenson, Dmitry
    2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 4525 - 4532
  • [48] An Interactive Simulator for Deformable Linear Objects Manipulation Planning
    Alvarez, Nahum
    Yamazaki, Kimitoshi
    2016 IEEE INTERNATIONAL CONFERENCE ON SIMULATION, MODELING, AND PROGRAMMING FOR AUTONOMOUS ROBOTS (SIMPAR), 2016, : 259 - 264
  • [49] Characterization of Deformable Objects by Using Dynamic Nonprehensile Manipulation
    Ramirez-Alpizar, Ixchel G.
    Higashimori, Mitsuru
    Kaneko, Makoto
    JOURNAL OF ROBOTICS AND MECHATRONICS, 2013, 25 (01) : 252 - 261
  • [50] Learning the Elasticity Parameters of Deformable Objects with a Manipulation Robot
    Frank, Barbara
    Schmedding, Ruediger
    Stachniss, Cyrill
    Teschner, Matthias
    Burgard, Wolfram
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 1877 - 1883