Source free unsupervised domain adaptation for electro-mechanical actuator fault diagnosis

被引:11
|
作者
Wang, Jianyu [1 ]
Zhang, Heng [1 ]
Miao, Qiang [1 ]
机构
[1] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Data privacy; Electro-mechanical actuator; Pseudo-label clustering; Nearest centroid filtering; Unsupervised domain adaptation; NETWORK; SIGNALS; SYSTEM;
D O I
10.1016/j.cja.2023.02.028
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A common necessity for prior unsupervised domain adaptation methods that can improve the domain adaptation in unlabeled target domain dataset is access to source domain dataset and target domain dataset simultaneously. However, data privacy makes it not always possible to access source domain dataset and target domain dataset in actual industrial equipment simultaneously, especially for aviation component like Electro-Mechanical Actuator (EMA) whose dataset are often not shareable due to the data copyright and confidentiality. To address this problem, this paper proposes a source free unsupervised domain adaptation framework for EMA fault diagnosis. The proposed framework is a combination of feature network and classifier. Firstly, source domain datasets are only applied to train a source model. Secondly, the well-trained source model is transferred to target domain and classifier is frozen based on source domain hypothesis. Thirdly, nearest centroid filtering is introduced to filter the reliable pseudo labels for unlabeled target domain dataset, and finally, supervised learning and pseudo label clustering are applied to fine-tune the transferred model. In comparison with several traditional unsupervised domain adaptation methods, case studies based on low- and high-frequency monitoring signals on EMA indicate the effectiveness of the proposed method. (c) 2023 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:252 / 267
页数:16
相关论文
共 50 条
  • [41] Universal source-free domain adaptation method for cross-domain fault diagnosis of machines
    Zhang, Yongchao
    Ren, Zhaohui
    Feng, Ke
    Yu, Kun
    Beer, Michael
    Liu, Zheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 191
  • [42] A novel unsupervised domain adaptation based on deep neural network and manifold regularization for mechanical fault diagnosis
    Zhang, Zhongwei
    Chen, Huaihai
    Li, Shunming
    An, Zenghui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (08)
  • [43] A Semantic Alignment Guided Transfer-Learning Method for Electro-Mechanical Actuator Fault Diagnosis Under Variable Working Conditions
    Kong, Lingkun
    Yu, Jinsong
    Tian, Limei
    Lu, Jinhu
    Zhang, Jian
    IEEE SENSORS JOURNAL, 2024, 24 (19) : 31367 - 31378
  • [44] Unsupervised Method Based on Adversarial Domain Adaptation for Bearing Fault Diagnosis
    Li, Yao
    Yang, Rui
    Wang, Hongshu
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [45] Unsupervised domain adaptation transfer learning for the fault diagnosis in rotating machinery
    Zhou, Xiangqi
    Fu, Zhongguang
    Gao, Yucai
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (10): : 106 - 113
  • [46] MODELING AND ANALYSIS OF ELECTRO-MECHANICAL FLIGHT ACTUATOR SYSTEM
    Hiear, Marek
    AEROSPACE RESEARCH IN BULGARIA, 2008, 22 : 122 - 132
  • [47] Entropy-Optimized Fault Diagnosis Based on Unsupervised Domain Adaptation
    Liu, Fuqiang
    Chen, Yandan
    Deng, Wenlong
    Zhou, Mingliang
    MATHEMATICS, 2023, 11 (09)
  • [48] Toward Unsupervised Domain Adaptation Fault Diagnosis: A Multisource Multitarget Method
    Wang, Zixuan
    Zhang, Jian
    Ma, Ke
    Butala, Mark D.
    Tang, Haoran
    Wang, Haibo
    Qin, Bo
    Shen, Weiming
    Wang, Hongwei
    IEEE SENSORS JOURNAL, 2025, 25 (01) : 1994 - 2007
  • [49] Unsupervised Domain Adaptation for Bearing Fault Diagnosis Considering the Decision Boundaries
    Han, Tianyu
    Shi, Xi
    Zhang, Gang
    Liu, Chao
    2021 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2021,
  • [50] Simulation and Analysis of Electro-Mechanical Actuator with Position Control
    Rengasamy, S.
    Manamalli, D.
    Ramaprabha, R.
    DEFENCE SCIENCE JOURNAL, 2023, 73 (01) : 100 - 111