Remaining Useful Life Prediction of PV Systems Under Dynamic Environmental Conditions

被引:3
|
作者
Liu, Qifang [1 ]
Hu, Qingpei [1 ]
Zhou, Jinfeng [2 ]
Yu, Dan [1 ]
Mo, Huadong [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100045, Peoples R China
[2] China Biodivers Conservat & Green Dev Fdn, Beijing 100089, Peoples R China
[3] Univ New South Wales, Sch Engn & Informat Technol, Sydney, NSW 2052, Australia
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2023年 / 13卷 / 04期
基金
国家重点研发计划;
关键词
Degradation; Predictive models; Hidden Markov models; Autoregressive processes; Time measurement; Photovoltaic systems; Market research; Environmental condition effects; prognostics; remaining useful life (RUL); semiparametric framework; GAMMA PROCESS MODEL; PHOTOVOLTAIC MODULES; DEGRADATION RATES; RESIDUAL LIFE; PERFORMANCE; REGRESSION;
D O I
10.1109/JPHOTOV.2023.3272071
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar power is one of the least carbon-intensive approaches for electricity generation, and so photovoltaic (PV) systems have great potential as a low-carbon technology during their long lifecycle. Consequently, remaining useful life (RUL) prediction is critical for the prognostics and health management of PV systems, potentially preventing unexpected failure and maintenance due to PV degradation. One of the major root causes of PV degradation is the dynamic environmental conditions associated with PV outdoor operation. However, RUL prediction under such dynamic environmental conditions remains challenging. This article presents a semiparametric prognostic framework for PV systems under dynamic environmental conditions. The quantitative relationship between PV degradation and environmental conditions is established to integrate environmental condition information into RUL prediction, combining the cumulative damage model with multivariate Bernstein bases. The block bootstrap method is used to estimate future environmental conditions as inputs for RUL prediction. The least-squares estimators of the model parameters can be obtained through the block coordinate descent method. Finally, applications to field data of Australian PV systems are presented to demonstrate the effectiveness of the proposed method. The proposed framework is applicable to most PV technologies.
引用
收藏
页码:590 / 602
页数:13
相关论文
共 50 条
  • [31] Review of Hybrid Prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an Application to Battery Life Prediction
    Liao, Linxia
    Koettig, Felix
    IEEE TRANSACTIONS ON RELIABILITY, 2014, 63 (01) : 191 - 207
  • [32] Remaining Useful Life Prediction for Complex Systems With Multiple Indicators Based on Particle Filter and Parameter Correlation
    Chen, Shaowei
    Wang, Meinan
    Huang, Dengshan
    Wen, Pengfei
    Wang, Shengyue
    Zhao, Shuai
    IEEE ACCESS, 2020, 8 : 215145 - 215156
  • [33] EMA remaining useful life prediction with weighted bagging GPR algorithm
    Zhang, Yujie
    Liu, Datong
    Yu, Jinxiang
    Peng, Yu
    Peng, Xiyuan
    MICROELECTRONICS RELIABILITY, 2017, 75 : 253 - 263
  • [34] A Novel Cap-LSTM Model for Remaining Useful Life Prediction
    Zhao, Chengying
    Huang, Xianzhen
    Li, Yuxiong
    Li, Shangjie
    IEEE SENSORS JOURNAL, 2021, 21 (20) : 23498 - 23509
  • [35] Remaining Useful Life Prediction of Ball Screw Under Time-Varying Conditions With Limited Data
    Yang, Hanbo
    Mei, Xuesong
    Jiang, Gedong
    Tao, Tao
    Sun, Zheng
    Zhao, Fei
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (05) : 4057 - 4066
  • [36] Prediction of Remaining Useful Life of Wind Turbine Bearings under Non-Stationary Operating Conditions
    Cao, Lixiao
    Qian, Zheng
    Zareipour, Hamid
    Wood, David
    Mollasalehi, Ehsan
    Tian, Shuangshu
    Pei, Yan
    ENERGIES, 2018, 11 (12)
  • [37] Multibranch Horizontal Augmentation Network for Continuous Remaining Useful Life Prediction
    Zhou, Jianghong
    Luo, Jun
    Pu, Huayan
    Qin, Yi
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (03): : 2237 - 2249
  • [38] A Selective Adversarial Adaptation Network for Remaining Useful Life Prediction of Machines Under Different Working Conditions
    Ye, Zhuang
    Yu, Jianbo
    IEEE SYSTEMS JOURNAL, 2023, 17 (01): : 62 - 71
  • [39] A Noise-Boosted Remaining Useful Life Prediction Method for Rotating Machines Under Different Conditions
    Xiao, Lei
    Duan, Fabing
    Tang, Junxuan
    Abbott, Derek
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [40] A Hybrid Method for Remaining Useful Life Prediction of Proton Exchange Membrane Fuel Cell Stack
    Wang, Fu-Kwun
    Amogne, Zemenu Endalamaw
    Chou, Jia-Hong
    IEEE ACCESS, 2021, 9 : 40486 - 40495