Remaining Useful Life Prediction of PV Systems Under Dynamic Environmental Conditions

被引:3
|
作者
Liu, Qifang [1 ]
Hu, Qingpei [1 ]
Zhou, Jinfeng [2 ]
Yu, Dan [1 ]
Mo, Huadong [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100045, Peoples R China
[2] China Biodivers Conservat & Green Dev Fdn, Beijing 100089, Peoples R China
[3] Univ New South Wales, Sch Engn & Informat Technol, Sydney, NSW 2052, Australia
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2023年 / 13卷 / 04期
基金
国家重点研发计划;
关键词
Degradation; Predictive models; Hidden Markov models; Autoregressive processes; Time measurement; Photovoltaic systems; Market research; Environmental condition effects; prognostics; remaining useful life (RUL); semiparametric framework; GAMMA PROCESS MODEL; PHOTOVOLTAIC MODULES; DEGRADATION RATES; RESIDUAL LIFE; PERFORMANCE; REGRESSION;
D O I
10.1109/JPHOTOV.2023.3272071
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar power is one of the least carbon-intensive approaches for electricity generation, and so photovoltaic (PV) systems have great potential as a low-carbon technology during their long lifecycle. Consequently, remaining useful life (RUL) prediction is critical for the prognostics and health management of PV systems, potentially preventing unexpected failure and maintenance due to PV degradation. One of the major root causes of PV degradation is the dynamic environmental conditions associated with PV outdoor operation. However, RUL prediction under such dynamic environmental conditions remains challenging. This article presents a semiparametric prognostic framework for PV systems under dynamic environmental conditions. The quantitative relationship between PV degradation and environmental conditions is established to integrate environmental condition information into RUL prediction, combining the cumulative damage model with multivariate Bernstein bases. The block bootstrap method is used to estimate future environmental conditions as inputs for RUL prediction. The least-squares estimators of the model parameters can be obtained through the block coordinate descent method. Finally, applications to field data of Australian PV systems are presented to demonstrate the effectiveness of the proposed method. The proposed framework is applicable to most PV technologies.
引用
收藏
页码:590 / 602
页数:13
相关论文
共 50 条
  • [21] Remaining Useful Life Prediction of Lubricating Oil With Small Samples
    Pan, Yan
    Han, Zhidong
    Wu, Tonghai
    Lei, Yaguo
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (07) : 7373 - 7381
  • [22] Remaining useful life prediction for fractional degradation processes under varying modes
    Xi, Xiaopeng
    Zhou, Donghua
    Chen, Maoyin
    Balakrishnan, Narayanaswamy
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 98 (06) : 1351 - 1364
  • [23] A Review of Remaining Useful Life Prediction Approaches for Mechanical Equipment
    Zhang, Yangyang
    Fang, Liqing
    Qi, Ziyuan
    Deng, Huiyong
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 29991 - 30006
  • [24] An Adaptive Levy Process Model for Remaining Useful Life Prediction
    Wen Bincheng
    Xiao Mingqing
    Tang Xilang
    Li Jianfeng
    Zhu Haizhen
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 10
  • [25] Remaining Useful Life Prediction of Machinery: A New Multiscale Temporal Convolutional Network Framework
    Deng, Feiyue
    Bi, Yan
    Liu, Yongqiang
    Yang, Shaopu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [26] Multivariate Relevance Vector Regression Based Degradation Modeling and Remaining Useful Life Prediction
    Wang, Xiuli
    Jiang, Bin
    Wu, Shaomin
    Lu, Ningyun
    Ding, Steven X.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (09) : 9514 - 9523
  • [27] Remaining Useful Life Prediction Combining Advanced Anomaly Detection and Graph Isomorphic Network
    Qi, Junyu
    Chen, Zhuyun
    Song, Yuchen
    Xia, Jingyan
    Li, Weihua
    IEEE SENSORS JOURNAL, 2024, 24 (22) : 38365 - 38376
  • [28] A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life
    Xu, Qing
    Wu, Min
    Khoo, Edwin
    Chen, Zhenghua
    Li, Xiaoli
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (01) : 177 - 187
  • [29] Multiscale Spatiotemporal Attention Network for Remaining Useful Life Prediction of Mechanical Systems
    Gao, Zhan
    Jiang, Weixiong
    Wu, Jun
    Dai, Tianjiao
    IEEE SENSORS JOURNAL, 2025, 25 (04) : 6825 - 6835
  • [30] Remaining Useful Life Prediction for Rolling Bearings Using EMD-RISI-LSTM
    Guo, Runxia
    Wang, Yu
    Zhang, Haochi
    Zhang, Guoliang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71 : 17 - 17