Parseval frames from compressions of Cuntz algebras

被引:0
作者
Christoffersen, Nicholas [1 ]
Dutkay, Dorin Ervin [2 ]
Picioroaga, Gabriel [3 ]
Weber, Eric S. [4 ]
机构
[1] Univ Colorado, Dept Math, Campus POB 395,2300 Colorado Ave, Boulder, CO 80309 USA
[2] Univ Cent Florida, Dept Math, 4000 Cent Florida Blvd,POB 161364, Orlando, FL 32816 USA
[3] Univ South Dakota, Dept Math Sci, 414 E Clark St, Vermillion, SD 57069 USA
[4] Iowa State Univ, Dept Math, 396 Carver Hall,411 Morrill Rd, Ames, IA 50011 USA
关键词
Cuntz algebra; Parseval frame; Row co-isometry; Iterated function systems; Fourier series; Fractal measures; Walsh bases; FOURIER-SERIES;
D O I
10.1007/s00209-023-03259-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A row co-isometry is a family (V-i)(i=0)(N-1) of operators on a Hilbert space, subject to the relation Sigma(N- 1)(i=0) ViV* (i) = I. As shown in Bratteli et al. (J Oper Theory, 43, 97-143, 2000), row co-isometries appear as compressions of representations of Cuntz algebras. In this paper we will present some general constructions of Parseval frames for Hilbert spaces, obtained by iterating the operators V-i on a finite set of vectors. The constructions are based on random walks on finite graphs. As applications of our constructions we obtain Parseval Fourier bases on self-affine measures and Parseval Walsh bases on the interval.
引用
收藏
页数:36
相关论文
共 29 条