Gas-phase thermochemistry of noncovalent ligand-alkali metal ion clusters: An impact of low frequencies

被引:9
|
作者
Otlyotov, Arseniy A. [1 ]
Minenkov, Yury [1 ,2 ,3 ]
机构
[1] RAS, NN Semenov Fed Res Ctr Chem Phys, Moscow, Russia
[2] Russian Acad Sci, Joint Inst High Temp, Moscow, Russia
[3] RAS, Semenov Fed Res Ctr Chem Phys, Kosygina St 4, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
alkali metal ion clusters; cationic noncovalent interactions; harmonic oscillator; low vibrational frequencies; vibrational entropy; HARMONIC VIBRATIONAL FREQUENCIES; COLLISION-INDUCED DISSOCIATION; DENSITY-FUNCTIONAL THEORY; SOLVATION FREE-ENERGY; CONSISTENT BASIS-SETS; AB-INITIO; CONTINUUM MODEL; SCALE FACTORS; HARTREE-FOCK; SODIUM-ION;
D O I
10.1002/jcc.27129
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The experimental gas-phase thermochemistry of reactions: M+(S)(n-1) + S? M+(S)(n) and M+ + nS? M+(S)(n), where M is an alkali metal and S is acetonitrile/ammonia, is reproduced. Three approximations are tested: (1) scaled rigid-rotor-harmonic-oscillator (sRRHO); (2) the sRRHO(100) identical to (1), but with all vibrational frequencies smaller than 100 cm(-1) replaced with 100 cm(-1); (3) Grimme's modified scaled RRHO (msRRHO) (Grimme, Chem. Eur. J., 2012, 18, 9955-9964). The msRRHO approach provides the most accurate reaction entropies with the mean unsigned error (MUE) below 5.5 cal mol(-1) K-1 followed by sRRHO(100) and sRRHO with MUEs of 7.2 and 16.9 cal mol(-1) K-1. For the first time, we propose using the msRRHO scheme to calculate the enthalpy contribution that is further utilized to arrive at reaction Gibbs free energies (? G(r)) ensuring the internal consistency. The final increment G(r) MUEs for msRRHO, sRRHO(100) and sRRHO schemes are 1.2, 3.6 and 3.1 kcal mol(-1).
引用
收藏
页码:1807 / 1816
页数:10
相关论文
共 50 条
  • [21] PROPERTIES OF SIZE AND COMPOSITION SELECTED GAS-PHASE ALKALI FULLERIDE CLUSTERS
    WEIS, P
    BECK, RD
    BRAUCHLE, G
    KAPPES, MM
    JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (08): : 5684 - 5695
  • [22] CO CHEMISORPTION ON FREE GAS-PHASE METAL-CLUSTERS
    COX, DM
    REICHMANN, KC
    TREVOR, DJ
    KALDOR, A
    JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (01): : 111 - 119
  • [23] Catalytic CO Oxidation by Gas-Phase Metal Oxide Clusters
    Li, Xiao-Na
    Wang, Li-Na
    Mou, Li-Hui
    He, Sheng-Gui
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (43): : 9257 - 9267
  • [24] POLYMERIZATION IN CLUSTERS AND IN THE GAS-PHASE USING METAL-IONS
    DALY, GM
    ELSHALL, MS
    ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1993, 26 : S186 - S188
  • [25] HYDROGEN CHEMISORPTION ON GAS-PHASE TRANSITION-METAL CLUSTERS
    KALDOR, A
    COX, DM
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1990, 86 (13): : 2459 - 2463
  • [26] CHEMISORPTION REACTIONS OF GAS-PHASE TRANSITION-METAL CLUSTERS
    KALDOR, A
    COX, DM
    BRICKMAN, RO
    FAYET, P
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1988, 196 : 52 - PHYS
  • [27] Gas-phase fragmentation of metal adducts of alkali- metal oxalate salts
    Hale, Robert D.
    Chan, Chang-Ching
    Weisbecker, Carl S.
    Attygalle, Athula B.
    JOURNAL OF MASS SPECTROMETRY, 2014, 49 (03): : 195 - 200
  • [28] Ligand and Metal Effects in the Gas-Phase Fragmentation of Thiomethoxymethyl Complexes
    Stebens, Gilles
    Kury, David
    Jakob, Lukas
    Butschke, Burkhard
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2024, 27 (32)
  • [29] Alkali Metal Cation-Induced Destabilization of Gas-Phase Protein-Ligand Complexes: Consequences and Prevention
    Hopper, Jonathan T. S.
    Oldham, Neil J.
    ANALYTICAL CHEMISTRY, 2011, 83 (19) : 7472 - 7479
  • [30] Alkali-metal ion in rare gas clusters: global minima
    Bilalbegovic, G
    PHYSICS LETTERS A, 2003, 308 (01) : 61 - 66