Gas-phase thermochemistry of noncovalent ligand-alkali metal ion clusters: An impact of low frequencies
被引:18
作者:
Otlyotov, Arseniy A.
论文数: 0引用数: 0
h-index: 0
机构:
RAS, NN Semenov Fed Res Ctr Chem Phys, Moscow, RussiaRAS, NN Semenov Fed Res Ctr Chem Phys, Moscow, Russia
Otlyotov, Arseniy A.
[1
]
Minenkov, Yury
论文数: 0引用数: 0
h-index: 0
机构:
RAS, NN Semenov Fed Res Ctr Chem Phys, Moscow, Russia
Russian Acad Sci, Joint Inst High Temp, Moscow, Russia
RAS, Semenov Fed Res Ctr Chem Phys, Kosygina St 4, Moscow 119991, RussiaRAS, NN Semenov Fed Res Ctr Chem Phys, Moscow, Russia
Minenkov, Yury
[1
,2
,3
]
机构:
[1] RAS, NN Semenov Fed Res Ctr Chem Phys, Moscow, Russia
[2] Russian Acad Sci, Joint Inst High Temp, Moscow, Russia
[3] RAS, Semenov Fed Res Ctr Chem Phys, Kosygina St 4, Moscow 119991, Russia
The experimental gas-phase thermochemistry of reactions: M+(S)(n-1) + S? M+(S)(n) and M+ + nS? M+(S)(n), where M is an alkali metal and S is acetonitrile/ammonia, is reproduced. Three approximations are tested: (1) scaled rigid-rotor-harmonic-oscillator (sRRHO); (2) the sRRHO(100) identical to (1), but with all vibrational frequencies smaller than 100 cm(-1) replaced with 100 cm(-1); (3) Grimme's modified scaled RRHO (msRRHO) (Grimme, Chem. Eur. J., 2012, 18, 9955-9964). The msRRHO approach provides the most accurate reaction entropies with the mean unsigned error (MUE) below 5.5 cal mol(-1) K-1 followed by sRRHO(100) and sRRHO with MUEs of 7.2 and 16.9 cal mol(-1) K-1. For the first time, we propose using the msRRHO scheme to calculate the enthalpy contribution that is further utilized to arrive at reaction Gibbs free energies (? G(r)) ensuring the internal consistency. The final increment G(r) MUEs for msRRHO, sRRHO(100) and sRRHO schemes are 1.2, 3.6 and 3.1 kcal mol(-1).