Gas-phase thermochemistry of noncovalent ligand-alkali metal ion clusters: An impact of low frequencies

被引:18
作者
Otlyotov, Arseniy A. [1 ]
Minenkov, Yury [1 ,2 ,3 ]
机构
[1] RAS, NN Semenov Fed Res Ctr Chem Phys, Moscow, Russia
[2] Russian Acad Sci, Joint Inst High Temp, Moscow, Russia
[3] RAS, Semenov Fed Res Ctr Chem Phys, Kosygina St 4, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
alkali metal ion clusters; cationic noncovalent interactions; harmonic oscillator; low vibrational frequencies; vibrational entropy; HARMONIC VIBRATIONAL FREQUENCIES; COLLISION-INDUCED DISSOCIATION; DENSITY-FUNCTIONAL THEORY; SOLVATION FREE-ENERGY; CONSISTENT BASIS-SETS; AB-INITIO; CONTINUUM MODEL; SCALE FACTORS; HARTREE-FOCK; SODIUM-ION;
D O I
10.1002/jcc.27129
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The experimental gas-phase thermochemistry of reactions: M+(S)(n-1) + S? M+(S)(n) and M+ + nS? M+(S)(n), where M is an alkali metal and S is acetonitrile/ammonia, is reproduced. Three approximations are tested: (1) scaled rigid-rotor-harmonic-oscillator (sRRHO); (2) the sRRHO(100) identical to (1), but with all vibrational frequencies smaller than 100 cm(-1) replaced with 100 cm(-1); (3) Grimme's modified scaled RRHO (msRRHO) (Grimme, Chem. Eur. J., 2012, 18, 9955-9964). The msRRHO approach provides the most accurate reaction entropies with the mean unsigned error (MUE) below 5.5 cal mol(-1) K-1 followed by sRRHO(100) and sRRHO with MUEs of 7.2 and 16.9 cal mol(-1) K-1. For the first time, we propose using the msRRHO scheme to calculate the enthalpy contribution that is further utilized to arrive at reaction Gibbs free energies (? G(r)) ensuring the internal consistency. The final increment G(r) MUEs for msRRHO, sRRHO(100) and sRRHO schemes are 1.2, 3.6 and 3.1 kcal mol(-1).
引用
收藏
页码:1807 / 1816
页数:10
相关论文
共 66 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]   Absolute hydration free energies of ions, ion-water clusters, and quasichemical theory [J].
Asthagiri, D ;
Pratt, LR ;
Ashbaugh, HS .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (05) :2702-2708
[3]   Density Functional Geometries and Zero-Point Energies in Ab Initio Thermochemical Treatments of Compounds with First-Row Atoms (H, C, N, O, F) [J].
Bakowies, Dirk ;
von Lilienfeld, O. Anatole .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (08) :4872-4890
[4]   Extendedtight-bindingquantum chemistry methods [J].
Bannwarth, Christoph ;
Caldeweyher, Eike ;
Ehlert, Sebastian ;
Hansen, Andreas ;
Pracht, Philipp ;
Seibert, Jakob ;
Spicher, Sebastian ;
Grimme, Stefan .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2021, 11 (02)
[5]   Ab initio study of M(CH3CN)n clusters (M = Li+, Na+, Mg2+) in the gas phase [J].
Cabaleiro-Lago, EM ;
Rios, MA .
CHEMICAL PHYSICS, 2000, 254 (01) :11-23
[6]   PROPERTIES OF CLUSTERS IN GAS-PHASE .2. AMMONIA ABOUT METAL-IONS [J].
CASTLEMAN, AW ;
HOLLAND, PM ;
LINDSAY, DM ;
PETERSON, KI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1978, 100 (19) :6039-6045
[7]   PROPERTIES OF CLUSTERS IN GAS-PHASE - AMMONIA ABOUT BI+, RB+, AND K+ [J].
CASTLEMAN, AW .
CHEMICAL PHYSICS LETTERS, 1978, 53 (03) :560-564
[8]   Frequency Scale Factors for Some Double-Hybrid Density Functional Theory Procedures: Accurate Thermochemical Components for High-Level Composite Protocols [J].
Chan, Bun ;
Radom, Leo .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (08) :3774-3780
[9]  
Cramer C J., 2004, Essentials of Computational Chemistry: Theories and Models, V2nd edn, DOI DOI 10.1021/ES3025885
[10]   IONIC SOLVATION BY APROTIC-SOLVENTS - GAS-PHASE SOLVATION OF ALKALI IONS BY ACETONITRILE [J].
DAVIDSON, WR ;
KEBARLE, P .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1976, 98 (20) :6125-6133