FvMYB44, a Strawberry R2R3-MYB Transcription Factor, Improved Salt and Cold Stress Tolerance in Transgenic Arabidopsis

被引:9
|
作者
Li, Wenhui [1 ]
Wei, Yangfan [1 ]
Zhang, Lihua [1 ]
Wang, Yu [2 ]
Song, Penghui [3 ]
Li, Xingguo [1 ]
Han, Deguo [1 ]
机构
[1] Northeast Agr Univ, Coll Hort & Landscape Architecture, Natl Local Joint Engn Res Ctr Dev & Utilizat Small, Key Lab Biol & Genet Improvement Hort Crops Northe, Harbin 150030, Peoples R China
[2] Heilongjiang Acad Agr Sci, Hort Branch, Harbin 150040, Peoples R China
[3] Heilongjiang Acad Agr Sci, Inst Rural Revitalizat Sci & Technol, Harbin 150028, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 04期
基金
中国国家自然科学基金;
关键词
Fragaria vesca; FvMYB44; salt stress; cold stress; Arabidopsis thaliana; SUPEROXIDE-DISMUTASE; GENE-EXPRESSION; PLANT-RESPONSES; INCREASES COLD; CLIMATE-CHANGE; CHLOROPHYLL-A; DROUGHT; CLONING; OVEREXPRESSION; IDENTIFICATION;
D O I
10.3390/agronomy13041051
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
MYB (v-MYB avian myeloblastosis viral oncogene homolog) transcription factor (TF) family has numerous members with complex and diverse functions, which perform an integral role in regulating the plant's response to adversity. This study used cloning to obtain a novel MYB TF gene from the diploid strawberry Fragaria vesca, which was given the designation FvMYB44. Subcellular localization results showed that the protein of FvMYB44 was a nuclear localization protein. The resistance of Arabidopsis thaliana to salt and low temperature stresses was greatly enhanced by the overexpression of FvMYB44. When subjected to salt and temperature stress, transgenic plants showed higher proline and chlorophyll concentrations and higher superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities than wild-type (WT) and unloaded line (UL) of A. thaliana. In contrast, WT and UL lines had higher malondialdehyde (MDA) content and reactive oxygen species ROS (O-2(-) and H2O2) content. These findings suggest that FvMYB44 may perform a role in controlling the response of A. thaliana to cold and salt stress.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] FvMYB24, a strawberry R2R3-MYB transcription factor, improved salt stress tolerance in transgenic Arabidopsis
    Wang, Shuaishuai
    Shi, Mengyun
    Zhang, Yang
    Xie, Xingbin
    Sun, Peipei
    Fang, Congbing
    Zhao, Jing
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 569 : 93 - 99
  • [2] Overexpression of a Fragaria vesca 1R-MYB Transcription Factor Gene (FvMYB114) Increases Salt and Cold Tolerance in Arabidopsis thaliana
    Li, Wenhui
    Li, Peng
    Chen, Huiyun
    Zhong, Jiliang
    Liang, Xiaoqi
    Wei, Yangfan
    Zhang, Lihua
    Wang, Haibo
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (06)
  • [3] R2R3-MYB TRANSCRIPTION FACTOR, MYB6, , FROM GRAPES CONFERS ENHANCED SALT STRESS TOLERANCE IN TRANSGENIC TOBACCO
    Han, F. F.
    Jia, K. Y.
    Li, K. W.
    Zhu, Z. G.
    Li, G. R.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2024, : 5017 - 5031
  • [4] PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance
    Shen, Xinjie
    Guo, Xinwei
    Guo, Xiao
    Zhao, Di
    Zhao, Wei
    Chen, Jingsheng
    Li, Tianhong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2017, 112 : 302 - 311
  • [5] Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, and tolerance to UV radiation and salt stress in transgenic Arabidopsis
    Li, X. W.
    Wang, Y.
    Yan, F.
    Li, J. W.
    Zhao, Y.
    Zhao, X.
    Zhai, Y.
    Wang, Q. Y.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (02)
  • [6] Overexpression of the Wild Soybean R2R3-MYB Transcription Factor GsMYB15 Enhances Resistance to Salt Stress and Helicoverpa Armigera in Transgenic Arabidopsis
    Shen, Xin-Jie
    Wang, Yan-Yan
    Zhang, Yong-Xing
    Guo, Wei
    Jiao, Yong-Qing
    Zhou, Xin-An
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (12)
  • [7] A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/drought tolerance in Arabidopsis
    Huang, Yunji
    Zhao, Haixia
    Gao, Fei
    Yao, Panfeng
    Deng, Renyu
    Li, Chenglei
    Chen, Hui
    Wu, Qi
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 132 : 238 - 248
  • [8] The R2R3-MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence
    Zhang, Ping
    Wang, Ruling
    Yang, Xianpeng
    Ju, Qiong
    Li, Weiqiang
    Lu, Shiyou
    Tran, Lam-Son Phan
    Xu, Jin
    PLANT CELL AND ENVIRONMENT, 2020, 43 (08) : 1925 - 1943
  • [9] The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana
    Yu, Yuehua
    Ni, Zhiyong
    Chen, Quanjia
    Qu, Yanying
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 491 (03) : 642 - 648
  • [10] Heterogeneous expression of the cotton R2R3-MYB transcription factor GbMYB60 increases salt sensitivity in transgenic Arabidopsis
    Xu, Fu-Chun
    Liu, Hui-Li
    Xu, Yun-Yun
    Zhao, Jing-Ruo
    Guo, Ya-Wei
    Long, Lu
    Gao, Wei
    Song, Chun-Peng
    PLANT CELL TISSUE AND ORGAN CULTURE, 2018, 133 (01) : 15 - 25