Self-supervised pretext task collaborative multi-view contrastive learning for video action recognition

被引:0
|
作者
Bi, Shuai [1 ]
Hu, Zhengping [1 ]
Zhao, Mengyao [1 ]
Zhang, Hehao [1 ]
Di, Jirui [1 ]
Sun, Zhe [1 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, West Hebei St 438, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised learning; Self-supervised learning; Pretext task learning; Multi-view contrastive learning; Action recognition;
D O I
10.1007/s11760-023-02605-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Self-supervised video representation learning attempts to extract latent spatiotemporal semantic information from unlabeled data that will be used for downstream visual understanding tasks. However, we found that in mainstream video datasets, the same actions may be marked as inconsistent categories in different environments. Therefore, it is crucial to concentrate on motion features and background areas while extracting the spatial and temporal characteristics of the video. This paper presents a self-supervised action recognition framework to learn the dynamic-static features of video by combining the pretext task with cross-view contrastive learning. Specifically, we first introduce a video cloze procedure pretext task that exploits temporally strong correlations to obtain prediction categories for further supervised information generation. Next, multi-view contrastive learning is proposed to extract motion characteristics and global semantic information from consecutive video frames. Through joint optimization of the pretext task and multiple contrast losses, our method demonstrates that the recognition accuracy on the UCF101 and HMDB51 datasets is 1.2% and 0.8% higher than the highest accuracy obtained by using residual contrastive and 1.3% and 0.4% higher than that obtained by using RGB contrastive only. Experimental results with different datasets and backbone networks demonstrate that our proposal can significantly increase the generalization and robustness of the model.
引用
收藏
页码:3775 / 3782
页数:8
相关论文
共 50 条
  • [1] Self-supervised pretext task collaborative multi-view contrastive learning for video action recognition
    Shuai Bi
    Zhengping Hu
    Mengyao Zhao
    Hehao Zhang
    Jirui Di
    Zhe Sun
    Signal, Image and Video Processing, 2023, 17 : 3775 - 3782
  • [2] Exploring Self-Supervised Multi-view Contrastive Learning for Speech Emotion Recognition with Limited Annotations
    Khaertdinov, Bulat
    Jeuris, Pedro
    Sousa, Annanda
    Hortal, Enrique
    INTERSPEECH 2024, 2024, : 4708 - 4712
  • [3] Multi-View Collaborative Training and Self-Supervised Learning for Group Recommendation
    Wei, Feng
    Chen, Shuyu
    MATHEMATICS, 2025, 13 (01)
  • [4] Self-supervised learning for multi-view stereo
    Ito S.
    Kaneko N.
    Sumi K.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2020, 86 (12): : 1042 - 1050
  • [5] Collaboratively Self-Supervised Video Representation Learning for Action Recognition
    Zhang, Jie
    Wan, Zhifan
    Hu, Lanqing
    Lin, Stephen
    Wu, Shuzhe
    Shan, Shiguang
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 1895 - 1907
  • [6] Multi-view Contrastive Self-Supervised Learning of Accounting Data Representations for Downstream Audit Tasks
    Schreyer, Marco
    Sattarov, Timur
    Borth, Damian
    ICAIF 2021: THE SECOND ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, 2021,
  • [7] Sleep Stage Classification Via Multi-View Based Self-Supervised Contrastive Learning of EEG
    Zhao, Chen
    Wu, Wei
    Zhang, Haoyi
    Zhang, Ruiyan
    Zheng, Xinyue
    Kong, Xiangzeng
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (12) : 7068 - 7077
  • [8] Multi-task self-supervised learning based fusion representation for Multi-view clustering
    Guo, Tianlong
    Shen, Derong
    Kou, Yue
    Nie, Tiezheng
    INFORMATION SCIENCES, 2025, 694
  • [9] Self-Supervised Discriminative Feature Learning for Deep Multi-View Clustering
    Xu, Jie
    Ren, Yazhou
    Tang, Huayi
    Yang, Zhimeng
    Pan, Lili
    Yang, Yang
    Pu, Xiaorong
    Yu, Philip S.
    He, Lifang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (07) : 7470 - 7482
  • [10] SELF-SUPERVISED CONTRASTIVE LEARNING FOR AUDIO-VISUAL ACTION RECOGNITION
    Liu, Yang
    Tan, Ying
    Lan, Haoyuan
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1000 - 1004