A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection

被引:484
|
作者
Li, Qinbin [1 ]
Wen, Zeyi [2 ]
Wu, Zhaomin [1 ]
Hu, Sixu [1 ]
Wang, Naibo [1 ]
Li, Yuan [1 ]
Liu, Xu [1 ]
He, Bingsheng [1 ]
机构
[1] Natl Univ Singapore, Singapore 119077, Singapore
[2] Univ Western Australia, Crawley, WA 6009, Australia
基金
新加坡国家研究基金会;
关键词
Federated learning; machine learning; data mining; survey; COMMUNICATION; OPPORTUNITIES; CHALLENGES; ATTACKS;
D O I
10.1109/TKDE.2021.3124599
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As data privacy increasingly becomes a critical societal concern, federated learning has been a hot research topic in enabling the collaborative training of machine learning models among different organizations under the privacy restrictions. As researchers try to support more machine learning models with different privacy-preserving approaches, there is a requirement in developing systems and infrastructures to ease the development of various federated learning algorithms. Similar to deep learning systems such as PyTorch and TensorFlow that boost the development of deep learning, federated learning systems (FLSs) are equivalently important, and face challenges from various aspects such as effectiveness, efficiency, and privacy. In this survey, we conduct a comprehensive review on federated learning systems. To understand the key design system components and guide future research, we introduce the definition of federated learning systems and analyze the system components. Moreover, we provide a thorough categorization for federated learning systems according to six different aspects, including data distribution, machine learning model, privacy mechanism, communication architecture, scale of federation and motivation of federation. The categorization can help the design of federated learning systems as shown in our case studies. By systematically summarizing the existing federated learning systems, we present the design factors, case studies, and future research opportunities.
引用
收藏
页码:3347 / 3366
页数:20
相关论文
共 50 条
  • [11] A Survey on Blockchain-Based Federated Learning and Data Privacy
    Chhetri, Bipin
    Gopali, Saroj
    Olapojoye, Rukayat
    Dehbashi, Samin
    Namin, Akhar Siami
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 1311 - 1318
  • [12] Privacy preservation in federated learning: An insightful survey from the GDPR perspective
    Nguyen Truong
    Sun, Kai
    Wang, Siyao
    Guitton, Florian
    Guo, YiKe
    COMPUTERS & SECURITY, 2021, 110
  • [13] Research Progress on Security and Privacy of Federated Learning: A Survey
    Ma, Xingpo
    Yan, Mengfan
    WIRELESS PERSONAL COMMUNICATIONS, 2024, 136 (04) : 2201 - 2242
  • [14] Federated learning in smart cities: Privacy and security survey
    Al-Huthaifi, Rasha
    Li, Tianrui
    Huang, Wei
    Gu, Jin
    Li, Chongshou
    INFORMATION SCIENCES, 2023, 632 : 833 - 857
  • [15] Achieving security and privacy in federated learning systems: Survey, research challenges and future directions
    Blanco-Justicia, Alberto
    Domingo-Ferrer, Josep
    Martinez, Sergio
    Sanchez, David
    Flanagan, Adrian
    Tan, Kuan Eeik
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 106
  • [16] Blockchain for federated learning toward secure distributed machine learning systems: a systemic survey
    Li, Dun
    Han, Dezhi
    Weng, Tien-Hsiung
    Zheng, Zibin
    Li, Hongzhi
    Liu, Han
    Castiglione, Arcangelo
    Li, Kuan-Ching
    SOFT COMPUTING, 2022, 26 (09) : 4423 - 4440
  • [17] Federated Learning for Privacy Preservation in Smart Healthcare Systems: A Comprehensive Survey
    Ali, Mansoor
    Naeem, Faisal
    Tariq, Muhammad
    Kaddoum, Georges
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (02) : 778 - 789
  • [18] Efficient federated learning privacy protection scheme
    Cheng S.
    Daochen C.
    Weiping P.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (05): : 178 - 187
  • [19] Federated learning on non-IID data: A survey
    Zhu, Hangyu
    Xu, Jinjin
    Liu, Shiqing
    Jin, Yaochu
    NEUROCOMPUTING, 2021, 465 : 371 - 390
  • [20] Progressive search personalization and privacy protection using federated learning
    Sarkar, Sagnik
    Agrawal, Shaashwat
    Chowdhuri, Aditi
    Ramani, S.
    EXPERT SYSTEMS, 2025, 42 (01)