Learning Causal Representations for Robust Domain Adaptation

被引:34
作者
Yang, Shuai [1 ]
Yu, Kui [1 ]
Cao, Fuyuan [2 ]
Liu, Lin [3 ]
Wang, Hao [1 ]
Li, Jiuyong [3 ]
机构
[1] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Key Lab Knowledge Engn Big Data, Minist Educ, Hefei 230601, Peoples R China
[2] Shanxi Univ, Sch Comp & Informat Technol, Taiyuan 030006, Peoples R China
[3] Univ South Australia, UniSA STEM, Adelaide, SA 5095, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Dogs; Data models; Predictive models; Markov processes; Adaptation models; Training; Sentiment analysis; Domain adaptation; causal discovery; autoencoder; FEATURE-SELECTION; RELEVANCE;
D O I
10.1109/TKDE.2021.3119185
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we investigate a challenging problem, namely, robust domain adaptation, where data from only a single well-labeled source domain are available in the training phase. To address this problem, assuming that the causal relationships between the features and the class variable are robust across domains, we propose a novel causal autoencoder (CAE), which integrates a deep autoencoder and a causal structure learning model to learn causal representations using data from a single source domain. Specifically, a deep autoencoder model is adopted to learn the low-dimensional representations, and a causal structure learning model is designed to separate the low-dimensional representations into two groups: causal representations and task-irrelevant representations. Using three real-world datasets, the experiments have validated the effectiveness of CAE, in comparison with eleven state-of-the-art methods.
引用
收藏
页码:2750 / 2764
页数:15
相关论文
共 57 条
[11]   Domain Generalization for Object Recognition with Multi-task Autoencoders [J].
Ghifary, Muhammad ;
Kleijn, W. Bastiaan ;
Zhang, Mengjie ;
Balduzzi, David .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2551-2559
[12]  
Harradon M, 2018, Arxiv, DOI arXiv:1802.00541
[13]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[14]  
Karsoliya S, 2012, International Journal of Engineering Trends and Technology, V3, P714
[15]   A Review of Domain Adaptation without Target Labels [J].
Kouw, Wouter M. ;
Loog, Marco .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (03) :766-785
[16]  
Kuang K, 2020, Arxiv, DOI arXiv:2006.05076
[17]  
Kuang K, 2020, AAAI CONF ARTIF INTE, V34, P4485
[18]   Stable Prediction across Unknown Environments [J].
Kuang, Kun ;
Cui, Peng ;
Athey, Susan ;
Xiong, Ruoxuan ;
Li, Bo .
KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, :1617-1626
[19]   Zero-Shot Deep Domain Adaptation With Common Representation Learning [J].
Kutbi, Mohammed ;
Peng, Kuan-Chuan ;
Wu, Ziyan .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) :3909-3924
[20]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444