Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing

被引:210
作者
Wang, Zhenwu [1 ,2 ]
Wei, Hua [3 ]
Huang, Youju [4 ]
Wei, Yen [5 ,6 ]
Chen, Jing [1 ]
机构
[1] Shandong Univ, Hosp Shandong Univ Ctr Orthopaed 2, Inst Med Sci, Cheeloo Coll Med, Jinan 250033, Peoples R China
[2] Karlsruhe Inst Technol KIT, Inst Biol & Chem Syst Funct Mol Syst IBCS FMS, Hermann Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Shandong Univ, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Peoples R China
[4] Hangzhou Normal Univ, Coll Mat Chem & Chem Engn, Hangzhou 310036, Peoples R China
[5] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Tsinghua Ctr Frontier Polymer Res, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
DOUBLE-NETWORK HYDROGELS; WEARABLE STRAIN SENSORS; CROSS-LINKED GELATIN; HIGH MECHANICAL STRENGTH; SELF-ASSEMBLING PEPTIDE; SILK FIBROIN HYDROGELS; ACID-BASED HYDROGELS; HYALURONIC-ACID; CONDUCTIVE HYDROGEL; IONIC HYDROGELS;
D O I
10.1039/d2cs00813k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The flourishing development of flexible healthcare sensing systems is inseparable from the fundamental materials with application-oriented mechanical and electrical properties. Thanks to continuous inspiration from our Mother Nature, flexible hydrogels originating from natural biomass are attracting growing attention for their structural and functional designs owing to their unique chemical, physical and biological properties. These highly efficient architectural and functional designs enable them to be the most promising candidates for flexible electronic sensing devices. This comprehensive review focuses on the recent advances in naturally sourced hydrogels for constructing multi-functional flexible sensors and healthcare applications thereof. We first briefly introduce representative natural polymers, including polysaccharides, proteins, and polypeptides, and summarize their unique physicochemical properties. The design principles and fabrication strategies for hydrogel sensors based on these representative natural polymers are outlined after the fundamental material properties required in healthcare sensing applications are presented. We then highlight the various fabrication techniques of natural hydrogels for sensing devices, and illustrate the representative examples of wearable or implantable bioelectronics for pressure, strain, temperature, or biomarker sensing in the field of healthcare systems. Finally, concluding remarks on challenges and prospects in the development of natural hydrogel-based flexible sensors are provided. We hope that this review will provide valuable information for the development of next-generation bioelectronics and build a bridge between the natural hydrogels as fundamental matter and multi-functional healthcare sensing as an applied target to accelerate new material design in the near future.
引用
收藏
页码:2992 / 3034
页数:43
相关论文
共 442 条
[1]   Ionic Tactile Sensors for Emerging Human-Interactive Technologies: A Review of Recent Progress [J].
Amoli, Vipin ;
Kim, Joo Sung ;
Kim, So Young ;
Koo, Jehyoung ;
Chung, Yoon Sun ;
Choi, Hanbin ;
Kim, Do Hwan .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (20)
[2]   Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor [J].
Arakawa, Takahiro ;
Kuroki, Yusuke ;
Nitta, Hiroki ;
Chouhan, Prem ;
Toma, Koji ;
Sawada, Shin-ichi ;
Takeuchi, Shuhei ;
Sekita, Toshiaki ;
Akiyoshi, Kazunari ;
Minakuchi, Shunsuke ;
Mitsubayashi, Kohji .
BIOSENSORS & BIOELECTRONICS, 2016, 84 :106-111
[3]   End-to-end design of wearable sensors [J].
Ates, H. Ceren ;
Nguyen, Peter Q. ;
Gonzalez-Macia, Laura ;
Morales-Narvaez, Eden ;
Guder, Firat ;
Collins, James J. ;
Dincer, Can .
NATURE REVIEWS MATERIALS, 2022, 7 (11) :887-907
[4]   Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals [J].
Ausra, Jokubas ;
Wu, Mingzheng ;
Zhang, Xin ;
Vazquez-Guardado, Abraham ;
Skelton, Patrick ;
Peralta, Roberto ;
Avila, Raudel ;
Murickan, Thomas ;
Haney, Chad R. ;
Huang, Yonggang ;
Rogers, John A. ;
Kozorovitskiy, Yevgenia ;
Gutruf, Philipp .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (30)
[5]   Collagen: A review on its sources and potential cosmetic applications [J].
Avila Rodriguez, Maria Isabela ;
Rodriguez Barroso, Laura G. ;
Lorena Sanchez, Mirna .
JOURNAL OF COSMETIC DERMATOLOGY, 2018, 17 (01) :20-26
[6]   Drug delivery and cytocompatibility of ciprofloxacin loaded gelatin nanofibers-coated Mg alloy [J].
Bakhsheshi-Rad, H. R. ;
Hadisi, Z. ;
Hamzah, E. ;
Ismail, A. F. ;
Aziz, M. ;
Kashefian, M. .
MATERIALS LETTERS, 2017, 207 :179-182
[7]   Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems [J].
Bandodkar, A. J. ;
Lee, S. P. ;
Huang, I ;
Li, W. ;
Wang, S. ;
Su, C-J ;
Jeang, W. J. ;
Hang, T. ;
Mehta, S. ;
Nyberg, N. ;
Gutruf, P. ;
Choi, J. ;
Koo, J. ;
Reeder, J. T. ;
Tseng, R. ;
Ghaffari, R. ;
Rogers, J. A. .
NATURE ELECTRONICS, 2020, 3 (09) :554-+
[8]   Non-invasive wearable electrochemical sensors: a review [J].
Bandodkar, Amay J. ;
Wang, Joseph .
TRENDS IN BIOTECHNOLOGY, 2014, 32 (07) :363-371
[9]   Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications [J].
Berger, J ;
Reist, M ;
Mayer, JM ;
Felt, O ;
Peppas, NA ;
Gurny, R .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2004, 57 (01) :19-34
[10]   Chitosan-based hydrogels for controlled, localized drug delivery [J].
Bhattarai, Narayan ;
Gunn, Jonathan ;
Zhang, Miqin .
ADVANCED DRUG DELIVERY REVIEWS, 2010, 62 (01) :83-99