Design of High Field HTS Coils for Magnetic Mirror

被引:1
作者
Radovinsky, Alexi [1 ]
Zhukovsky, Alexander [1 ]
Kelton, Nick [1 ]
Kristofek, Grant [1 ]
Kuznetsov, Sergey [1 ]
Nash, Daniel [1 ]
Sanabria, Charlie [1 ]
LaBombard, Brian [2 ]
Brunner, Daniel [1 ]
机构
[1] Commonwealth Fus Syst, Cambridge, MA 02139 USA
[2] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
关键词
Conduction-cooled; high-temperature superconducting (HTS) magnet; partially insulated (PI); REBCO;
D O I
10.1109/TASC.2023.3240377
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper outlines the preliminary design of an experimental compact (<2 tons), high-field (similar to 20 T on tape, similar to 17 T at center bore), and conduction-cooled HTS REBCO magnet. An identical pair of these magnets will be manufactured for a magnetic mirror axial fusion device. The magnet consists of eight single pancakes in series, each of which is an interchangeable, dry-wound, partial-insulated winding. Once charged, the magnet is operated with a constant current and will be used in the presence of other magnets. Field-induced mechanical stresses in the winding pack are managed using a novel technique of 'partitions' keyed into structural plates. The system is conduction-cooled by cryocoolers to operate at 20 K. The winding pack is mechanically supported and thermally isolated in the cryostat by high-strength, low-thermal conductivity brackets designed to sustain over 60 tons of axial loading during peak device operating conditions.
引用
收藏
页数:5
相关论文
共 12 条
  • [1] ARPA-E, 2020, HTS AX MAGN MIRR FAS
  • [2] Cheng J., 2022, PROC APPL SUPERCOND, P1
  • [3] Overview of the SPARC tokamak
    Creely, A. J.
    Greenwald, M. J.
    Ballinger, S. B.
    Brunner, D.
    Canik, J.
    Doody, J.
    Fulop, T.
    Garnier, D. T.
    Granetz, R.
    Gray, T. K.
    Holland, C.
    Howard, N. T.
    Hughes, J. W.
    Irby, J. H.
    Izzo, V. A.
    Kramer, G. J.
    Kuang, A. Q.
    LaBombard, B.
    Lin, Y.
    Lipschultz, B.
    Logan, N. C.
    Lore, J. D.
    Marmar, E. S.
    Montes, K.
    Mumgaard, R. T.
    Paz-Soldan, C.
    Rea, C.
    Reinke, M. L.
    Rodriguez-Fernandez, P.
    Sarkimaki, K.
    Sciortino, F.
    Scott, S. D.
    Snicker, A.
    Snyder, P. B.
    Sorbom, B. N.
    Sweeney, R.
    Tinguely, R. A.
    Tolman, E. A.
    Umansky, M.
    Vallhagen, O.
    Varje, J.
    Whyte, D. G.
    Wright, J. C.
    Wukitch, S. J.
    Zhu, J.
    [J]. JOURNAL OF PLASMA PHYSICS, 2020, 86 (05)
  • [4] Greenberg A., 2022, PROC APPL SUPERCOND
  • [5] 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet
    Hahn, Seungyong
    Kim, Kwanglok
    Kim, Kwangmin
    Hu, Xinbo
    Painter, Thomas
    Dixon, Iain
    Kim, Seokho
    Bhattarai, Kabindra R.
    Noguchi, So
    Jaroszynski, Jan
    Larbalestier, David C.
    [J]. NATURE, 2019, 570 (7762) : 496 - +
  • [6] Hahn S, 2011, IEEE T APPL SUPERCON, V21, P1592, DOI [10.1109/TASC.2010.2093492, 10.1109/tasc.2010.2093492]
  • [7] Metal-as-insulation HTS coils
    Lecrevisse, Thibault
    Chaud, Xavier
    Fazilleau, Philippe
    Genot, Clement
    Song, Jung-Bin
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2022, 35 (07)
  • [8] OPTIMUM INPUT LEADS FOR CRYOGENIC APPARATUS
    MCFEE, R
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1959, 30 (02) : 98 - 102
  • [9] Piec Z., 2020, DEV HIGH FIELD NONIN
  • [10] Radovinsky A., 2021, US Patent, Patent No. [2021236901A2, 2021236901]