Modulational instability in transversely connected nonlinear pendulum pairs

被引:5
|
作者
Kuitche, A. Kamdoum [1 ]
Motcheyo, A. B. Togueu [1 ,2 ]
Kanaa, Thomas [2 ]
Tchawoua, C. [1 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
[2] Univ Ebolowa, Higher Tech Teachers Training Coll ENSET Ebolowa, Dept Mech Engn, POB 886, Ebolowa, Cameroon
关键词
LOCALIZED MODES; WAVES; GENERATION; BREATHERS; DYNAMICS; SOLITONS; LIGHT;
D O I
10.1140/epjp/s13360-023-03761-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we investigate the modulational instability (MI) phenomenon in a chain of coupled pendulum pairs, where each pendulum is connected to the nearest neighbors in the longitudinal and transverse directions. Based on the obtained equation describing the dynamics of the model, we derive the coupled discrete nonlinear Schrodinger equation using the multiple scale method. We use the obtained coupled discrete nonlinear Schrodinger equation to study the possibility of modulational instability. The linear stability analysis leads us to obtain the growth rate of the MI. It reveals that the instability growth rate and MI band are dramatically affected by the transverse coupling parameter. Finally, we use the MI analysis to study the dynamics of the generated unstable plane wave solutions numerically. This confirms that the existence of MI in the lattice leads to the breakup of wave into periodic localized pulses which have the shape of soliton-like objects.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Supratransmission in transversely connected nonlinear pendulum pairs
    Kuitche, Kamdoum
    Motcheyo, A. B. Togueu
    Kanaa, Thomas
    Tchawoua, C.
    CHAOS SOLITONS & FRACTALS, 2022, 160
  • [2] Bright soliton propagation with loss and gain phenomena in transversely connected nonlinear pendulum pairs
    Kuitche, A. Kamdoum
    Motcheyo, A. B. Togueu
    Yaou, Zakari
    Kanaa, Thomas
    Tchawoua, C.
    MODERN PHYSICS LETTERS B, 2024, 38 (26):
  • [3] Azimuthal modulational instability of vortices in the nonlinear Schrodinger equation
    Caplan, R. M.
    Hoq, Q. E.
    Carretero-Gonzalez, R.
    Kevrekidis, P. G.
    OPTICS COMMUNICATIONS, 2009, 282 (07) : 1399 - 1405
  • [4] Modulational instability and discrete breathers in a nonlinear helicoidal lattice model
    Ding, Jinmin
    Wu, Tianle
    Chang, Xia
    Tang, Bing
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 349 - 358
  • [5] A Lagrangian approach to modulational instability in nonlocal nonlinear Kerr media
    Al-Marzoug, S. M.
    PHYSICS LETTERS A, 2021, 413
  • [6] Universal Nature of the Nonlinear Stage of Modulational Instability
    Biondini, Gino
    Mantzavinos, Dionyssios
    PHYSICAL REVIEW LETTERS, 2016, 116 (04)
  • [7] Recurrent nonlinear modulational instability in the β-FPUT chain
    Armaroli, Andrea
    Trillo, Stefano
    CHAOS SOLITONS & FRACTALS, 2024, 188
  • [8] Semiquantum chaotic manifestations of modulational instability
    Lekeufack, Olivier Tiokeng
    Kofane, Timoleon Crepin
    PHYSICA SCRIPTA, 2013, 87 (03)
  • [9] From modulational instability to self-trapping in nonlinear chains with power-law hopping amplitudes
    Dias, W. S.
    Sousa, J. F. A.
    Lyra, M. L.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 532
  • [10] Modulational instability of nonlinear polarization mode coupling in microresonators
    Hansson, T.
    Bernard, M.
    Wabnitz, S.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (04) : 835 - 841