Numerical Simulation for a High-Dimensional Chaotic Lorenz System Based on Gegenbauer Wavelet Polynomials

被引:27
作者
Alqhtani, Manal [1 ]
Khader, Mohamed M. [2 ,3 ]
Saad, Khaled Mohammed [1 ]
机构
[1] Najran Univ, Coll Arts & Sci, Dept Math, Najran 55461, Saudi Arabia
[2] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 11566, Saudi Arabia
[3] Benha Univ, Fac Sci, Dept Math, Banha 13511, Egypt
关键词
chaotic Lorenz model; Caputo differential operator; Gegenbauer wavelet polynomials; SCM; fourth-order Runge-Kutta method; MODEL;
D O I
10.3390/math11020472
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide an effective simulation to investigate the solution behavior of nine-dimensional chaos for the fractional (Caputo-sense) Lorenz system using a new approximate technique of the spectral collocation method (SCM) depending on the properties of Gegenbauer wavelet polynomials (GWPs). This technique reduces the given problem to a non-linear system of algebraic equations. We satisfy the accuracy and efficiency of the proposed method by computing the residual error function. The numerical solutions obtained are compared with the results obtained by implementing the Runge-Kutta method of order four. The results show that the given procedure is an easily applied and efficient tool to simulate this model.
引用
收藏
页数:12
相关论文
共 30 条
[1]   Implementation of an accurate method for the analysis and simulation of electrical R-L circuits [J].
Adel, Mohamed ;
Srivastava, Hari M. ;
Khader, Mohamed M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) :8362-8371
[2]   A Fractional Order Investigation of Smoking Model Using Caputo-Fabrizio Differential Operator [J].
Anjam, Yasir Nadeem ;
Shafqat, Ramsha ;
Sarris, Ioannis E. ;
Ur Rahman, Mati ;
Touseef, Sajida ;
Arshad, Muhammad .
FRACTAL AND FRACTIONAL, 2022, 6 (11)
[3]  
Celik I., 2018, INT J APPL COMPUT MA, V4, P111, DOI [DOI 10.1007/S40819-018-0546-2, 10.1007/s40819-018-0546-2]
[4]   Gegenbauer wavelet collocation method for the extended Fisher-Kolmogorov equation in two dimensions [J].
Celik, Ibrahim .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) :5615-5628
[5]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[6]   Numerical simulation of chaotic dynamical systems by the method of differential quadrature [J].
Eftekhari, S. A. ;
Jafari, A. A. .
SCIENTIA IRANICA, 2012, 19 (05) :1299-1315
[7]   Ultraspherical integral method for optimal control problems governed by ordinary differential equations [J].
El-Hawary, HM ;
Salim, MS ;
Hussien, HS .
JOURNAL OF GLOBAL OPTIMIZATION, 2003, 25 (03) :283-303
[8]   NONLINEAR DYNAMICS OF A CONVECTION LOOP - A QUANTITATIVE COMPARISON OF EXPERIMENT WITH THEORY [J].
GORMAN, M ;
WIDMANN, PJ ;
ROBBINS, KA .
PHYSICA D, 1986, 19 (02) :255-267
[9]   ANALOGY BETWEEN HIGHER INSTABILITIES IN FLUIDS AND LASERS [J].
HAKEN, H .
PHYSICS LETTERS A, 1975, A 53 (01) :77-78
[10]   Modified wavelets-based algorithm for nonlinear delay differential equations of fractional order [J].
Iqbal, Muhammad Asad ;
Shakeel, Muhammad ;
Mohyud-Din, Syed Tauseef ;
Rafiq, Muhammad .
ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (04) :1-8